MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation
- URL: http://arxiv.org/abs/2411.17636v1
- Date: Tue, 26 Nov 2024 17:53:44 GMT
- Title: MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation
- Authors: Harsh Singh, Rocktim Jyoti Das, Mingfei Han, Preslav Nakov, Ivan Laptev,
- Abstract summary: Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
- Score: 52.739500459903724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation. While recent efforts in robotics have leveraged LLMs both for high-level and low-level planning, these approaches often face significant challenges, such as hallucinations in long-horizon tasks and limited adaptability due to the generation of plans in a single pass without real-time feedback. To address these limitations, we propose a novel multi-agent LLM framework, Multi-Agent Large Language Model for Manipulation (MALMM) that distributes high-level planning and low-level control code generation across specialized LLM agents, supervised by an additional agent that dynamically manages transitions. By incorporating observations from the environment after each step, our framework effectively handles intermediate failures and enables adaptive re-planning. Unlike existing methods, our approach does not rely on pre-trained skill policies or in-context learning examples and generalizes to a variety of new tasks. We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting, thereby overcoming key limitations of existing LLM-based manipulation methods.
Related papers
- EMMOE: A Comprehensive Benchmark for Embodied Mobile Manipulation in Open Environments [11.97783742296183]
We introduce Embodied Mobile Manipulation in Open Environments (EMMOE), which requires agents to interpret user instructions and execute long-horizon everyday tasks in continuous space.
EMMOE seamlessly integrates high-level and low-level embodied tasks into a unified framework, along with three new metrics for more diverse assessment.
Furthermore, we design HomieBot, a sophisticated agent system consists of LLM with Direct Optimization Preference (DPO), light weighted navigation and manipulation models, and multiple error detection mechanisms.
arXiv Detail & Related papers (2025-03-11T16:42:36Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities.
We explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol.
We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.
However, they still struggle with problems requiring multi-step decision-making and environmental feedback.
We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - Large Language Models for Multi-Robot Systems: A Survey [9.31855372655603]
Multi-Robot Systems (MRS) pose unique challenges, including coordination, scalability, and real-world adaptability.
This survey provides the first comprehensive exploration of Large Language Models (LLMs) integration into MRS.
We highlight key applications in diverse domains, such as household robotics, construction, formation control, target tracking, and robot games.
arXiv Detail & Related papers (2025-02-06T06:52:14Z) - LaMMA-P: Generalizable Multi-Agent Long-Horizon Task Allocation and Planning with LM-Driven PDDL Planner [9.044939946653002]
Language models (LMs) possess a strong capability to comprehend natural language, making them effective in translating human instructions into detailed plans for simple robot tasks.
We propose a Language Model-Driven Multi-Agent PDDL Planner (LaMMA-P), a novel multi-agent task planning framework.
LaMMA-P integrates the strengths of the LMs' reasoning capability and the traditional search planner to achieve a high success rate and efficiency.
arXiv Detail & Related papers (2024-09-30T17:58:18Z) - Policy Adaptation via Language Optimization: Decomposing Tasks for Few-Shot Imitation [49.43094200366251]
We propose a novel approach for few-shot adaptation to unseen tasks that exploits the semantic understanding of task decomposition.
Our method, Policy Adaptation via Language Optimization (PALO), combines a handful of demonstrations of a task with proposed language decompositions.
We find that PALO is able of consistently complete long-horizon, multi-tier tasks in the real world, outperforming state of the art pre-trained generalist policies.
arXiv Detail & Related papers (2024-08-29T03:03:35Z) - Embodied AI in Mobile Robots: Coverage Path Planning with Large Language Models [6.860460230412773]
We propose an LLM-embodied path planning framework for mobile agents.
Our proposed multi-layer architecture uses prompted LLMs in the path planning phase and integrates them with the mobile agents' low-level actuators.
Our experiments show that this framework can improve LLMs' 2D plane reasoning abilities and complete coverage path planning tasks.
arXiv Detail & Related papers (2024-07-02T12:38:46Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
Large Language Models (LLMs) have demonstrated impressive capability in many natural language tasks.
LLMs are prone to produce errors, hallucinations and inconsistent statements when performing multi-step reasoning.
We introduce Q*, a framework for guiding LLMs decoding process with deliberative planning.
arXiv Detail & Related papers (2024-06-20T13:08:09Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
Open-source pre-trained Large Language Models (LLMs) exhibit strong language understanding and generation capabilities.
When used as agents for dealing with complex problems in the real world, their performance is far inferior to large commercial models such as ChatGPT and GPT-4.
arXiv Detail & Related papers (2024-03-29T03:48:12Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
Large Language Model (LLM) agents significantly extend the capabilities of standalone LLMs.
We propose a novel approach that decomposes the aforementioned capabilities into a planner, caller, and summarizer.
This modular framework facilitates individual updates and the potential use of smaller LLMs for building each capability.
arXiv Detail & Related papers (2024-01-14T16:17:07Z) - LgTS: Dynamic Task Sampling using LLM-generated sub-goals for
Reinforcement Learning Agents [10.936460061405157]
We propose LgTS (LLM-guided Teacher-Student learning), a novel approach that explores the planning abilities of LLMs.
Our approach does not assume access to a propreitary or a fine-tuned LLM, nor does it require pre-trained policies that achieve the sub-goals proposed by the LLM.
arXiv Detail & Related papers (2023-10-14T00:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.