Towards Pattern-aware Data Augmentation for Temporal Knowledge Graph Completion
- URL: http://arxiv.org/abs/2501.00252v1
- Date: Tue, 31 Dec 2024 03:47:19 GMT
- Title: Towards Pattern-aware Data Augmentation for Temporal Knowledge Graph Completion
- Authors: Jiasheng Zhang, Deqiang Ouyang, Shuang Liang, Jie Shao,
- Abstract summary: We introduce Booster, the first data augmentation strategy for temporal knowledge graphs.
We propose a hierarchical scoring algorithm based on triadic closures within TKGs.
We also propose a two-stage training approach to identify samples that deviate from the model's preferred patterns.
- Score: 18.51546761241817
- License:
- Abstract: Predicting missing facts for temporal knowledge graphs (TKGs) is a fundamental task, called temporal knowledge graph completion (TKGC). One key challenge in this task is the imbalance in data distribution, where facts are unevenly spread across entities and timestamps. This imbalance can lead to poor completion performance or long-tail entities and timestamps, and unstable training due to the introduction of false negative samples. Unfortunately, few previous studies have investigated how to mitigate these effects. Moreover, for the first time, we found that existing methods suffer from model preferences, revealing that entities with specific properties (e.g., recently active) are favored by different models. Such preferences will lead to error accumulation and further exacerbate the effects of imbalanced data distribution, but are overlooked by previous studies. To alleviate the impacts of imbalanced data and model preferences, we introduce Booster, the first data augmentation strategy for TKGs. The unique requirements here lie in generating new samples that fit the complex semantic and temporal patterns within TKGs, and identifying hard-learning samples specific to models. Therefore, we propose a hierarchical scoring algorithm based on triadic closures within TKGs. By incorporating both global semantic patterns and local time-aware structures, the algorithm enables pattern-aware validation for new samples. Meanwhile, we propose a two-stage training approach to identify samples that deviate from the model's preferred patterns. With a well-designed frequency-based filtering strategy, this approach also helps to avoid the misleading of false negatives. Experiments justify that Booster can seamlessly adapt to existing TKGC models and achieve up to an 8.7% performance improvement.
Related papers
- Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
Diffusion models operate over a sequence of timesteps instead of instantaneous input-output relationships in previous contexts.
We present Diffusion-TracIn that incorporates this temporal dynamics and observe that samples' loss gradient norms are highly dependent on timestep.
We introduce Diffusion-ReTrac as a re-normalized adaptation that enables the retrieval of training samples more targeted to the test sample of interest.
arXiv Detail & Related papers (2024-01-17T07:58:18Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
We introduce a powerful model-class namely "Denoising Diffusion Probabilistic Models" or DDPMs for chirographic data.
Our model named "ChiroDiff", being non-autoregressive, learns to capture holistic concepts and therefore remains resilient to higher temporal sampling rate.
arXiv Detail & Related papers (2023-04-07T15:17:48Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
Differentiable score-based causal discovery methods learn a directed acyclic graph from observational data.
We propose a model-agnostic framework to boost causal discovery performance by dynamically learning the adaptive weights for the Reweighted Score function, ReScore.
arXiv Detail & Related papers (2023-03-06T14:49:59Z) - Rethinking Precision of Pseudo Label: Test-Time Adaptation via
Complementary Learning [10.396596055773012]
We propose a novel complementary learning approach to enhance test-time adaptation.
In test-time adaptation tasks, information from the source domain is typically unavailable.
We highlight that the risk function of complementary labels agrees with their Vanilla loss formula.
arXiv Detail & Related papers (2023-01-15T03:36:33Z) - TeST: Test-time Self-Training under Distribution Shift [99.68465267994783]
Test-Time Self-Training (TeST) is a technique that takes as input a model trained on some source data and a novel data distribution at test time.
We find that models adapted using TeST significantly improve over baseline test-time adaptation algorithms.
arXiv Detail & Related papers (2022-09-23T07:47:33Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
Test-time adaptation seeks to tackle potential distribution shifts between training and testing data.
We propose an active sample selection criterion to identify reliable and non-redundant samples.
We also introduce a Fisher regularizer to constrain important model parameters from drastic changes.
arXiv Detail & Related papers (2022-04-06T06:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.