M2I2: Learning Efficient Multi-Agent Communication via Masked State Modeling and Intention Inference
- URL: http://arxiv.org/abs/2501.00312v1
- Date: Tue, 31 Dec 2024 07:07:28 GMT
- Title: M2I2: Learning Efficient Multi-Agent Communication via Masked State Modeling and Intention Inference
- Authors: Chuxiong Sun, Peng He, Qirui Ji, Zehua Zang, Jiangmeng Li, Rui Wang, Wei Wang,
- Abstract summary: M2I2 is a novel framework designed to enhance the agents' capabilities to assimilate and utilize received information effectively.
M2I2 equips agents with advanced capabilities for masked state modeling and joint-action prediction.
We evaluate M2I2 across diverse multi-agent tasks, the results demonstrate its superior performance, efficiency, and capabilities.
- Score: 10.7436449414166
- License:
- Abstract: Communication is essential in coordinating the behaviors of multiple agents. However, existing methods primarily emphasize content, timing, and partners for information sharing, often neglecting the critical aspect of integrating shared information. This gap can significantly impact agents' ability to understand and respond to complex, uncertain interactions, thus affecting overall communication efficiency. To address this issue, we introduce M2I2, a novel framework designed to enhance the agents' capabilities to assimilate and utilize received information effectively. M2I2 equips agents with advanced capabilities for masked state modeling and joint-action prediction, enriching their perception of environmental uncertainties and facilitating the anticipation of teammates' intentions. This approach ensures that agents are furnished with both comprehensive and relevant information, bolstering more informed and synergistic behaviors. Moreover, we propose a Dimensional Rational Network, innovatively trained via a meta-learning paradigm, to identify the importance of dimensional pieces of information, evaluating their contributions to decision-making and auxiliary tasks. Then, we implement an importance-based heuristic for selective information masking and sharing. This strategy optimizes the efficiency of masked state modeling and the rationale behind information sharing. We evaluate M2I2 across diverse multi-agent tasks, the results demonstrate its superior performance, efficiency, and generalization capabilities, over existing state-of-the-art methods in various complex scenarios.
Related papers
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AI agents are increasingly being deployed to automate tasks, often based on ambiguous and underspecified user instructions.
Making unwarranted assumptions and failing to ask clarifying questions can lead to suboptimal outcomes.
We study the ability of LLM agents to handle ambiguous instructions in interactive code generation settings by evaluating proprietary and open-weight models on their performance.
arXiv Detail & Related papers (2025-02-18T17:12:26Z) - Contextual Knowledge Sharing in Multi-Agent Reinforcement Learning with Decentralized Communication and Coordination [0.9776703963093367]
Multi-Agent Reinforcement Learning (Dec-MARL) has emerged as a pivotal approach for addressing complex tasks in dynamic environments.
This paper presents a novel Dec-MARL framework that integrates peer-to-peer communication and coordination, incorporating goal-awareness and time-awareness into the agents' knowledge-sharing processes.
arXiv Detail & Related papers (2025-01-26T22:49:50Z) - Tacit Learning with Adaptive Information Selection for Cooperative Multi-Agent Reinforcement Learning [13.918498667158119]
We introduce a novel cooperative MARL framework based on information selection and tacit learning.
We integrate gating and selection mechanisms, allowing agents to adaptively filter information based on environmental changes.
Experiments on popular MARL benchmarks show that our framework can be seamlessly integrated with state-of-the-art algorithms.
arXiv Detail & Related papers (2024-12-20T07:55:59Z) - Communication Learning in Multi-Agent Systems from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
We introduce a temporal gating mechanism for each agent, enabling dynamic decisions on whether to receive shared information at a given time.
arXiv Detail & Related papers (2024-11-01T05:56:51Z) - Learning Multi-Agent Communication from Graph Modeling Perspective [62.13508281188895]
We introduce a novel approach wherein we conceptualize the communication architecture among agents as a learnable graph.
Our proposed approach, CommFormer, efficiently optimize the communication graph and concurrently refines architectural parameters through gradient descent in an end-to-end manner.
arXiv Detail & Related papers (2024-05-14T12:40:25Z) - T2MAC: Targeted and Trusted Multi-Agent Communication through Selective
Engagement and Evidence-Driven Integration [15.91335141803629]
We propose Targeted and Trusted Multi-Agent Communication (T2MAC) to help agents learn selective engagement and evidence-driven integration.
T2MAC enables agents to craft individualized messages, pinpoint ideal communication windows, and engage with reliable partners.
We evaluate our method on a diverse set of cooperative multi-agent tasks, with varying difficulties, involving different scales.
arXiv Detail & Related papers (2024-01-19T18:00:33Z) - AntEval: Evaluation of Social Interaction Competencies in LLM-Driven
Agents [65.16893197330589]
Large Language Models (LLMs) have demonstrated their ability to replicate human behaviors across a wide range of scenarios.
However, their capability in handling complex, multi-character social interactions has yet to be fully explored.
We introduce the Multi-Agent Interaction Evaluation Framework (AntEval), encompassing a novel interaction framework and evaluation methods.
arXiv Detail & Related papers (2024-01-12T11:18:00Z) - Collaborative Information Dissemination with Graph-based Multi-Agent
Reinforcement Learning [2.9904113489777826]
This paper introduces a Multi-Agent Reinforcement Learning (MARL) approach for efficient information dissemination.
We propose a Partially Observable Game (POSG) for information dissemination empowering each agent to decide on message forwarding independently.
Our experimental results show that our trained policies outperform existing methods.
arXiv Detail & Related papers (2023-08-25T21:30:16Z) - Re-mine, Learn and Reason: Exploring the Cross-modal Semantic
Correlations for Language-guided HOI detection [57.13665112065285]
Human-Object Interaction (HOI) detection is a challenging computer vision task.
We present a framework that enhances HOI detection by incorporating structured text knowledge.
arXiv Detail & Related papers (2023-07-25T14:20:52Z) - Cross-modal Consensus Network for Weakly Supervised Temporal Action
Localization [74.34699679568818]
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision.
We propose a cross-modal consensus network (CO2-Net) to tackle this problem.
arXiv Detail & Related papers (2021-07-27T04:21:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.