論文の概要: Unrolled Creative Adversarial Network For Generating Novel Musical Pieces
- arxiv url: http://arxiv.org/abs/2501.00452v1
- Date: Tue, 31 Dec 2024 14:07:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:11:50.952897
- Title: Unrolled Creative Adversarial Network For Generating Novel Musical Pieces
- Title(参考訳): 新たな音楽作品作成のための非登録クリエイティブ・アドバイザリアル・ネットワーク
- Authors: Pratik Nag,
- Abstract要約: GAN(Generative Adversarial Network)およびGAN(Generative Adversarial Network)は、音楽生成の研究者によって研究されている。
本稿では,創造的な音楽を生み出すための新しいシステムとともに,古典的なシステムを採用した。
GANは、その分布から学び模倣する一連の入力を与えられた新しい出力を生成することができる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Music generation has been established as a prominent topic in artificial intelligence and machine learning over recent years. In most recent works on RNN-based neural network methods have been applied for sequence generation. In contrast, generative adversarial networks (GANs) and their counterparts have been explored by very few researchersfor music generation. In this paper, a classical system was employed alongside a new system to generate creative music. Both systems were designed based on adversarial networks to generate music by learning from examples. The classical system was trained to learn a set of music pieces without differentiating between classes, whereas the new system was trained to learn the different composers and their styles to generate a creative music piece by deviating from the learned composers' styles. The base structure utilized was generative adversarial networks (GANs), which are capable of generating novel outputs given a set of inputs to learn from and mimic their distribution. It has been shown in previous work that GANs are limited in their original design with respect to creative outputs. Building on the Creative Adversarial Networks (CAN) , this work applied them in the music domain rather than the visual art domain. Additionally, unrolled CAN was introduced to prevent mode collapse. Experiments were conducted on both GAN and CAN for generating music, and their capabilities were measured in terms of deviation from the input set.
- Abstract(参考訳): 近年、人工知能と機械学習において音楽生成が顕著な話題として確立されている。
RNNベースのニューラルネットワーク手法に関する最近の研究は、シーケンス生成に応用されている。
対照的に、GAN(Generative Adversarial Network)とその対応するネットワークは、音楽生成のための非常に少数の研究者によって調査されている。
本稿では,創造的な音楽を生み出すための新しいシステムとともに,古典的なシステムを採用した。
どちらのシステムも、サンプルから学習して音楽を生成するために、敵対的ネットワークに基づいて設計されている。
古典的な体系は、クラスを区別せずに一組の曲を学ぶように訓練され、新しい体系は、異なる作曲家とそのスタイルを学習して、学習した作曲家のスタイルから逸脱して創造的な曲を作るように訓練された。
ベースとなる構造はGAN(Generative Adversarial Network)であり、入力セットを与えられた新しい出力を生成して、その分布から学習し模倣することができる。
以前の研究で、GANは創造的なアウトプットに関して、元の設計に限られていることが示されている。
CAN(Creative Adversarial Networks)に基づいて構築されたこの研究は、視覚芸術分野ではなく音楽分野に応用された。
さらにモード崩壊を防ぐためのアンロールCANも導入された。
GANとCANの両方で音楽生成実験を行い、入力セットから逸脱する度合いを計測した。
関連論文リスト
- ComposerX: Multi-Agent Symbolic Music Composition with LLMs [51.68908082829048]
音楽の構成は、長い依存と調和の制約で情報を理解し、生成する能力を必要とする複雑なタスクである。
現在のLLMは、このタスクで簡単に失敗し、In-Context-LearningやChain-of-Thoughtsといったモダンな技術が組み込まれても、不適切な曲を生成する。
エージェントベースのシンボリック音楽生成フレームワークであるComposerXを提案する。
論文 参考訳(メタデータ) (2024-04-28T06:17:42Z) - GETMusic: Generating Any Music Tracks with a Unified Representation and
Diffusion Framework [58.64512825534638]
シンボリック・ミュージック・ジェネレーションは、ユーザーが音楽を作るのに役立つ音符を作成することを目的としている。
私たちは「GETMusic」と呼ばれるフレームワークを紹介します。「GET'」は「GEnerate Music Tracks」の略です。
GETScoreは、音符をトークンとして表現し、2D構造でトークンを整理する。
提案する表現は,非自己回帰生成モデルと組み合わせて,任意のソース・ターゲットトラックの組み合わせでGETMusicに音楽を生成する。
論文 参考訳(メタデータ) (2023-05-18T09:53:23Z) - Comparision Of Adversarial And Non-Adversarial LSTM Music Generative
Models [2.569647910019739]
この研究は、MIDIデータに基づいて、リカレントニューラルネットワーク音楽作曲家の敵対的および非敵対的な訓練を実装し、比較する。
この評価は, 対人訓練がより審美的に楽しむ音楽を生み出すことを示唆している。
論文 参考訳(メタデータ) (2022-11-01T20:23:49Z) - Musika! Fast Infinite Waveform Music Generation [0.0]
Musikaは、何百時間もの音楽を、単一の消費者向けGPUを使って訓練できる音楽生成システムだ。
まず、逆自己エンコーダを用いて分光器の大きさと位相のコンパクトな可逆表現を学習する。
潜在座標系は任意の長さの抜粋列を並列に生成することができ、一方、グローバルな文脈ベクトルは、時間を通してスタイリスティックに整合性を保つことができる。
論文 参考訳(メタデータ) (2022-08-18T08:31:15Z) - Face editing with GAN -- A Review [0.0]
GAN(Generative Adversarial Networks)は、ディープラーニングを扱う研究者やエンジニアの間でホットな話題となっている。
GANには、ジェネレータと識別器という、2つの競合するニューラルネットワークがある。
他の生成モデルと異なるのは、ラベルのないサンプルを学習する能力である。
論文 参考訳(メタデータ) (2022-07-12T06:51:53Z) - Can GAN originate new electronic dance music genres? -- Generating novel
rhythm patterns using GAN with Genre Ambiguity Loss [0.0]
本稿では,音楽生成,特に電子舞踊音楽のリズムパターンに着目し,深層学習を用いて新しいリズムを生成できるかを論じる。
我々は、GAN(Generative Adversarial Networks)のフレームワークを拡張し、データセット固有の分布から分岐することを奨励する。
提案したGANは、音楽リズムのように聞こえるリズムパターンを生成できるが、トレーニングデータセットのどのジャンルにも属さないことを示す。
論文 参考訳(メタデータ) (2020-11-25T23:22:12Z) - Melody-Conditioned Lyrics Generation with SeqGANs [81.2302502902865]
本稿では,SeqGAN(Sequence Generative Adversarial Networks)に基づく,エンドツーエンドのメロディ条件付き歌詞生成システムを提案する。
入力条件が評価指標に悪影響を及ぼすことなく,ネットワークがより有意義な結果が得られることを示す。
論文 参考訳(メタデータ) (2020-10-28T02:35:40Z) - Incorporating Music Knowledge in Continual Dataset Augmentation for
Music Generation [69.06413031969674]
Aug-Genは、リソース制約のあるドメインでトレーニングされた任意の音楽生成システムに対するデータセット拡張の方法である。
我々は、Aug-Gen をトランスフォーマーベースのコラール生成に J.S. Bach のスタイルで適用し、これによりより長いトレーニングが可能となり、より優れた生成出力が得られることを示す。
論文 参考訳(メタデータ) (2020-06-23T21:06:15Z) - Artificial Musical Intelligence: A Survey [51.477064918121336]
音楽は、機械学習と人工知能研究の領域としてますます広まりつつある。
この記事では、音楽知能の定義を提供し、その構成成分の分類を導入し、その追求に耐えうる幅広いAI手法を調査します。
論文 参考訳(メタデータ) (2020-06-17T04:46:32Z) - From Artificial Neural Networks to Deep Learning for Music Generation --
History, Concepts and Trends [0.0]
本稿では,ディープラーニング技術に基づく音楽生成のチュートリアルを提供する。
1980年代後半から、音楽生成のための人工ニューラルネットワークを用いて、いくつかの初期の作品を分析している。
論文 参考訳(メタデータ) (2020-04-07T00:33:56Z) - RL-Duet: Online Music Accompaniment Generation Using Deep Reinforcement
Learning [69.20460466735852]
本稿では,オンライン伴奏生成のための深層強化学習アルゴリズムを提案する。
提案アルゴリズムは人体に応答し,メロディック,ハーモニック,多種多様な機械部品を生成する。
論文 参考訳(メタデータ) (2020-02-08T03:53:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。