Analogue black string in a quantum harmonic oscillator
- URL: http://arxiv.org/abs/2501.00478v1
- Date: Tue, 31 Dec 2024 15:03:57 GMT
- Title: Analogue black string in a quantum harmonic oscillator
- Authors: Matheus E. Pereira, Alexandre G. M. Schmidt,
- Abstract summary: We write the exact solution of the Klein-Gordon equation in the background of a chargeless, static black string.
The eigenvalue problem provides complex energy values for the particle, which may indicate the presence of quasinormal modes.
We show a simple quantum system that can imitate the particle in the black string background, whose solutions are also applications of the biconfluent Heun function.
- Score: 49.1574468325115
- License:
- Abstract: For a scalar particle without self-interaction or backreaction from the space-time background, the dynamics are governed by the Klein-Gordon equation. In this work, we write the exact solution of this equation in the background of a chargeless, static black string in terms of the biconfluent Heun function. In this curious system, we are able to explore what happens if we have negative values for the masses. The eigenvalue problem provides complex energy values for the particle, which may indicate the presence of quasinormal modes. We show a simple quantum system that can imitate the particle in the black string background, whose solutions are also applications of the biconfluent Heun function.
Related papers
- Unitarity constrains the quantum information metrics for particle interactions [0.0]
Unitarity provides mathematical and physical constraints on quantum information systems.
The language of non-relativistic quantum mechanics is presented to derive the density matrix for hard scattering.
For the inelastic scattering of an electron from a proton, the language of relativistic quantum mechanics is used to derive the momentum entropy or Sackur-Tetrode equation.
arXiv Detail & Related papers (2024-12-17T06:38:58Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Open Quantum Systems with Kadanoff-Baym Equations [0.0]
We study quantum mechanical fermionic particles exhibiting one bound state within a one-dimensional attractive square-well potential in a heat bath of bosonic particles.
For this open quantum system we formulate the non-equilibrium Kadanoff-Baym equations for the system particles.
The corresponding spatially imhomogeneous integro-differential equations for the one-particle Greens's function are solved numerically.
arXiv Detail & Related papers (2023-08-15T09:19:21Z) - Free expansion of a Gaussian wavepacket using operator manipulations [77.34726150561087]
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes.
We provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator.
As quantum instruction evolves to include more quantum information science applications, reworking this well known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.
arXiv Detail & Related papers (2023-04-28T19:20:52Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum potential in dust collapse with a negative cosmological constant [0.0]
We obtain the wave function describing collapsing dust in an anti-de Sitter background, as seen by a co-moving observer.
We perform a causal de Broglie-Bohm analysis, and obtain the corresponding quantum potential.
An initially collapsing solution with a negative cosmological constant bounces back after reaching a minimum radius.
arXiv Detail & Related papers (2020-07-21T17:43:02Z) - Quantum behavior of a classical particle subject to a random force [0.0]
We show that the Schrodinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force.
We show that the same result applies to small potential perturbations around the harmonic oscillator as long as the total potential preserves the periodicity of motion.
arXiv Detail & Related papers (2020-06-26T14:28:20Z) - Quantum particle motion on the surface of a helicoid in the presence of
harmonic oscillator [0.0]
We study the consequences of a helicoidal geometry in the Schr"odinger equation dealing with an anisotropic mass tensor.
We determine the eigenfunctions in terms of Confluent Heun Functions and compute the respective energy levels.
arXiv Detail & Related papers (2020-05-03T23:47:11Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.