Exploring Physics-Informed Neural Networks for Crop Yield Loss Forecasting
- URL: http://arxiv.org/abs/2501.00502v1
- Date: Tue, 31 Dec 2024 15:21:50 GMT
- Title: Exploring Physics-Informed Neural Networks for Crop Yield Loss Forecasting
- Authors: Miro Miranda, Marcela Charfuelan, Andreas Dengel,
- Abstract summary: In response to climate change, assessing crop productivity under extreme weather conditions is essential to enhance food security.
We propose a novel method that combines the strengths of both approaches by estimating the water use and the crop sensitivity to water scarcity at the pixel level.
Our model demonstrates high accuracy, achieving an R2 of up to 0.77, matching or surpassing state-of-the-art models like RNNs and Transformers.
- Score: 4.707950656037167
- License:
- Abstract: In response to climate change, assessing crop productivity under extreme weather conditions is essential to enhance food security. Crop simulation models, which align with physical processes, offer explainability but often perform poorly. Conversely, machine learning (ML) models for crop modeling are powerful and scalable yet operate as black boxes and lack adherence to crop growths physical principles. To bridge this gap, we propose a novel method that combines the strengths of both approaches by estimating the water use and the crop sensitivity to water scarcity at the pixel level. This approach enables yield loss estimation grounded in physical principles by sequentially solving the equation for crop yield response to water scarcity, using an enhanced loss function. Leveraging Sentinel-2 satellite imagery, climate data, simulated water use data, and pixel-level yield data, our model demonstrates high accuracy, achieving an R2 of up to 0.77, matching or surpassing state-of-the-art models like RNNs and Transformers. Additionally, it provides interpretable and physical consistent outputs, supporting industry, policymakers, and farmers in adapting to extreme weather conditions.
Related papers
- Learning to generate physical ocean states: Towards hybrid climate modeling [1.5845117761091052]
Ocean General Circulation Models require extensive computational resources to reach equilibrium states.
Deep learning emulators, despite offering fast predictions, lack the physical interpretability and long-term stability necessary for climate scientists.
We propose to take the best from both worlds by leveraging deep generative models to produce physically consistent oceanic states.
arXiv Detail & Related papers (2025-02-04T17:14:41Z) - Efficient Subseasonal Weather Forecast using Teleconnection-informed
Transformers [29.33938664834226]
Subseasonal forecasting is pivotal for agriculture, water resource management, and early warning of disasters.
Recent advances in machine learning have revolutionized weather forecasting by achieving competitive predictive skills to numerical models.
However, training such foundation models requires thousands of GPU days, which causes substantial carbon emissions.
arXiv Detail & Related papers (2024-01-31T14:27:35Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - Hierarchical-level rain image generative model based on GAN [4.956959291938016]
hierarchical-level rain image generative model, rain conditional CycleGAN, is constructed.
Different rain intensities are introduced as labels in conditional GAN.
Model structure is optimized and the training strategy is adjusted to alleviate the problem of mode collapse.
arXiv Detail & Related papers (2023-09-06T12:59:52Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
We compare different deep learning models for prediction of water depth at high spatial resolution.
Deep learning models are trained to reproduce the data simulated by the CADDIES cellular-automata flood model.
Our results show that the deep learning models present in general lower errors compared to the other methods.
arXiv Detail & Related papers (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
Generative adversarial networks (GANs) have been demonstrated by the computer vision community to be successful at super-resolution problems.
We show that GANs and VAE-GANs can match the statistical properties of state-of-the-art pointwise post-processing methods whilst creating high-resolution, spatially coherent precipitation maps.
arXiv Detail & Related papers (2022-04-05T07:19:42Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - TRU-NET: A Deep Learning Approach to High Resolution Prediction of
Rainfall [21.399707529966474]
We present TRU-NET, an encoder-decoder model featuring a novel 2D cross attention mechanism between contiguous convolutional-recurrent layers.
We use a conditional-continuous loss function to capture the zero-skewed %extreme event patterns of rainfall.
Experiments show that our model consistently attains lower RMSE and MAE scores than a DL model prevalent in short term precipitation prediction.
arXiv Detail & Related papers (2020-08-20T17:27:59Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.