An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems
- URL: http://arxiv.org/abs/2501.00562v2
- Date: Fri, 03 Jan 2025 06:28:02 GMT
- Title: An Overview and Discussion on Using Large Language Models for Implementation Generation of Solutions to Open-Ended Problems
- Authors: Hashmath Shaik, Alex Doboli,
- Abstract summary: Large Language Models could support creating new methods to support problem solving activities for open-ended problems.
This report summarized the current work on Large Language Models, including model prompting, Reinforcement Learning, and Retrieval-Augmented Generation.
- Score: 0.0
- License:
- Abstract: Large Language Models offer new opportunities to devise automated implementation generation methods that can tackle problem solving activities beyond traditional methods, which require algorithmic specifications and can use only static domain knowledge, like performance metrics and libraries of basic building blocks. Large Language Models could support creating new methods to support problem solving activities for open-ended problems, like problem framing, exploring possible solving approaches, feature elaboration and combination, more advanced implementation assessment, and handling unexpected situations. This report summarized the current work on Large Language Models, including model prompting, Reinforcement Learning, and Retrieval-Augmented Generation. Future research requirements were also discussed.
Related papers
- Inference Optimizations for Large Language Models: Effects, Challenges, and Practical Considerations [0.0]
Large language models are ubiquitous in natural language processing because they can adapt to new tasks without retraining.
This literature review focuses on various techniques for reducing resource requirements and compressing large language models.
arXiv Detail & Related papers (2024-08-06T12:07:32Z) - Scalable Language Model with Generalized Continual Learning [58.700439919096155]
The Joint Adaptive Re-ization (JARe) is integrated with Dynamic Task-related Knowledge Retrieval (DTKR) to enable adaptive adjustment of language models based on specific downstream tasks.
Our method demonstrates state-of-the-art performance on diverse backbones and benchmarks, achieving effective continual learning in both full-set and few-shot scenarios with minimal forgetting.
arXiv Detail & Related papers (2024-04-11T04:22:15Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
Chain-of-thought (CoT) prompting for language models demonstrates impressive performance across reasoning tasks.
We introduce a new prompting approach, analogical prompting, designed to automatically guide the reasoning process of large language models.
arXiv Detail & Related papers (2023-10-03T00:57:26Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Model-based Programming: Redefining the Atomic Unit of Programming for
the Deep Learning Era [2.712076884994214]
We propose the concept of 'Model-based Programming' and present a novel programming language - M Language.
M Language treats models as basic computational units, enabling developers to concentrate more on crucial tasks.
arXiv Detail & Related papers (2023-05-12T09:38:11Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
Foundation models pretrained on diverse data at scale have demonstrated extraordinary capabilities in a wide range of vision and language tasks.
New paradigms are emerging for training foundation models to interact with other agents and perform long-term reasoning.
Research at the intersection of foundation models and decision making holds tremendous promise for creating powerful new systems.
arXiv Detail & Related papers (2023-03-07T18:44:07Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Learning to Generalize for Sequential Decision Making [19.075378799280728]
We introduce a teacher-student imitation learning methodology and a means of converting a reinforcement learning model into a natural language understanding model.
We show that models can learn faster and generalize more, leveraging both the imitation learning and the reformulation.
arXiv Detail & Related papers (2020-10-05T18:00:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.