論文の概要: Sidewalk Hazard Detection Using Variational Autoencoder and One-Class SVM
- arxiv url: http://arxiv.org/abs/2501.00585v1
- Date: Tue, 31 Dec 2024 18:18:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:16.757422
- Title: Sidewalk Hazard Detection Using Variational Autoencoder and One-Class SVM
- Title(参考訳): 変分オートエンコーダとワンクラスSVMを用いたサイドウォークハザード検出
- Authors: Edgar Guzman, Robert D. Howe,
- Abstract要約: 本稿では,ハイブリッドアプローチを用いた歩道安全ナビゲーションシステムを提案する。
このシステムは歩道の異常を検知し、歩行障害を引き起こす可能性がある。
提案されたVAEモデルは高い性能を示し、AUC(Area Under the Curve)は0.94である。
- 参考スコア(独自算出の注目度): 1.7495213911983414
- License:
- Abstract: The unpredictable nature of outdoor settings introduces numerous safety concerns, making hazard detection crucial for safe navigation. This paper introduces a novel system for sidewalk safety navigation utilizing a hybrid approach that combines a Variational Autoencoder (VAE) with a One-Class Support Vector Machine (OCSVM). The system is designed to detect anomalies on sidewalks that could potentially pose walking hazards. A dataset comprising over 15,000 training frames and 5,000 testing frames was collected using video recordings, capturing various sidewalk scenarios, including normal and hazardous conditions. During deployment, the VAE utilizes its reconstruction mechanism to detect anomalies within a frame. Poor reconstruction by the VAE implies the presence of an anomaly, after which the OCSVM is used to confirm whether the anomaly is hazardous or non-hazardous. The proposed VAE model demonstrated strong performance, with a high Area Under the Curve (AUC) of 0.94, effectively distinguishing anomalies that could be potential hazards. The OCSVM is employed to reduce the detection of false hazard anomalies, such as manhole or water valve covers. This approach achieves an accuracy of 91.4%, providing a highly reliable system for distinguishing between hazardous and non-hazardous scenarios. These results suggest that the proposed system offers a robust solution for hazard detection in uncertain environments.
- Abstract(参考訳): 屋外設定の予測不能な性質は、多くの安全上の懸念をもたらし、安全航行にとって危険検出が不可欠である。
本稿では,変分オートエンコーダ(VAE)とワンクラスサポートベクトルマシン(OCSVM)を組み合わせたハイブリッドアプローチを用いた歩道安全ナビゲーションシステムを提案する。
このシステムは歩道の異常を検知し、歩行障害を引き起こす可能性がある。
15,000以上のトレーニングフレームと5000以上のテストフレームからなるデータセットをビデオ記録を用いて収集し、正常および有害な状況を含む様々な歩道シナリオをキャプチャした。
配備中、VAEはその再構成機構を使用してフレーム内の異常を検出する。
VAEによる貧弱な再建は異常の存在を意味し、OCSVMは異常が危険であるか危険でないかを確認するために使用される。
提案されたVAEモデルは高い性能を示し、AUC(Area Under the Curve)は0.94であり、潜在的な危険となる可能性のある異常を効果的に識別した。
OCSVMはマンホールや水バルブカバーなどの誤検出を減らすために使用される。
このアプローチは91.4%の精度を実現し、危険シナリオと危険でないシナリオを区別するための信頼性の高いシステムを提供する。
これらの結果から, 不確実な環境下でのハザード検出に頑健な手法が提案されていることが示唆された。
関連論文リスト
- Anomalous State Sequence Modeling to Enhance Safety in Reinforcement Learning [0.0]
本稿では,RLの安全性を高めるために,異常状態列を利用した安全強化学習(RL)手法を提案する。
自動運転車を含む複数の安全クリティカルな環境の実験において、我々のソリューションアプローチはより安全なポリシーをうまく学習する。
論文 参考訳(メタデータ) (2024-07-29T10:30:07Z) - Enhancing Functional Safety in Automotive AMS Circuits through Unsupervised Machine Learning [9.100418852199082]
AMS回路における早期異常検出のための教師なし機械学習に基づく新しいフレームワークを提案する。
提案手法では、様々な回路位置や個々のコンポーネントに異常を注入して、多種多様な総合的な異常データセットを作成する。
これらの異常条件下でのシステムの挙動をモニタリングすることにより、異常の伝播とその影響を異なる抽象レベルで捉える。
論文 参考訳(メタデータ) (2024-04-02T04:33:03Z) - Resilient VAE: Unsupervised Anomaly Detection at the SLAC Linac Coherent
Light Source [3.7390282036618916]
本稿では,Resilient Variational Autoencoder (ResVAE)について紹介する。
ResVAEはトレーニングデータに存在する異常に対するレジリエンスを示し、特徴レベルの異常属性を提供する。
本稿では,SLAC Linac Coherent Light Sourceにおける加速器状態の異常を検出するために提案手法を適用した。
論文 参考訳(メタデータ) (2023-09-05T15:53:41Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Sensing Anomalies as Potential Hazards: Datasets and Benchmarks [43.55994393060723]
本稿では,自律移動ロボットの視覚知覚データストリームにおいて,特異な意味パターンを検出することの問題点について考察する。
ロボット探索のシナリオで得られた3つの新しい画像ベースデータセットをコントリビュートする。
本研究では,異なるスケールで動作するオートエンコーダに基づく異常検出手法の性能について検討する。
論文 参考訳(メタデータ) (2021-10-27T18:47:06Z) - Sample-Efficient Safety Assurances using Conformal Prediction [57.92013073974406]
早期警戒システムは、安全でない状況が差し迫ったときに警告を提供することができる。
安全性を確実に向上させるためには、これらの警告システムは証明可能な偽陰性率を持つべきである。
本稿では,共形予測と呼ばれる統計的推論手法とロボット・環境力学シミュレータを組み合わせたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-28T23:00:30Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - Anomaly Detection in Unsupervised Surveillance Setting Using Ensemble of
Multimodal Data with Adversarial Defense [0.3867363075280543]
本稿では,実時間画像とIMUセンサデータの異常度を推定するアンサンブル検出機構を提案する。
提案手法は,IEEE SP Cup-2020データセットで97.8%の精度で良好に動作する。
論文 参考訳(メタデータ) (2020-07-17T20:03:02Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。