論文の概要: Time-Varying Graph Learning for Data with Heavy-Tailed Distribution
- arxiv url: http://arxiv.org/abs/2501.00606v1
- Date: Tue, 31 Dec 2024 19:09:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:07.928733
- Title: Time-Varying Graph Learning for Data with Heavy-Tailed Distribution
- Title(参考訳): 重み付き分布データに対する時変グラフ学習
- Authors: Amirhossein Javaheri, Jiaxi Ying, Daniel P. Palomar, Farokh Marvasti,
- Abstract要約: グラフモデルは、ネットワーク上で定義されたデータ構造をキャプチャする効率的なツールを提供する。
このようなモデルを学ぶための現在の方法論は、データ内の外れ値に対する堅牢性に欠けることが多い。
本稿では,重み付きデータを効率的に表現できる時間変化グラフモデルの学習問題に対処する。
- 参考スコア(独自算出の注目度): 15.576923158246428
- License:
- Abstract: Graph models provide efficient tools to capture the underlying structure of data defined over networks. Many real-world network topologies are subject to change over time. Learning to model the dynamic interactions between entities in such networks is known as time-varying graph learning. Current methodology for learning such models often lacks robustness to outliers in the data and fails to handle heavy-tailed distributions, a common feature in many real-world datasets (e.g., financial data). This paper addresses the problem of learning time-varying graph models capable of efficiently representing heavy-tailed data. Unlike traditional approaches, we incorporate graph structures with specific spectral properties to enhance data clustering in our model. Our proposed method, which can also deal with noise and missing values in the data, is based on a stochastic approach, where a non-negative vector auto-regressive (VAR) model captures the variations in the graph and a Student-t distribution models the signal originating from this underlying time-varying graph. We propose an iterative method to learn time-varying graph topologies within a semi-online framework where only a mini-batch of data is used to update the graph. Simulations with both synthetic and real datasets demonstrate the efficacy of our model in analyzing heavy-tailed data, particularly those found in financial markets.
- Abstract(参考訳): グラフモデルは、ネットワーク上で定義されたデータ構造をキャプチャする効率的なツールを提供する。
多くの実世界のネットワークトポロジは、時間とともに変化する。
このようなネットワーク内のエンティティ間の動的相互作用をモデル化する学習は、時間変化グラフ学習として知られている。
このようなモデルを学ぶための現在の方法論は、データ内の外れ値に対する堅牢性に欠けることが多く、多くの実世界のデータセット(例えば財務データ)で共通する特徴である重み付き分布の処理に失敗する。
本稿では,重み付きデータを効率的に表現できる時間変化グラフモデルの学習問題に対処する。
従来のアプローチとは異なり、我々はモデル内のデータクラスタリングを強化するために、特定のスペクトル特性を持つグラフ構造を組み込んでいます。
提案手法は,非負ベクトル自己回帰(VAR)モデルがグラフの変動を捉え,学生-t分布がこの基礎となる時間変化グラフから発する信号をモデル化する確率的アプローチに基づく。
半オンラインフレームワークにおいて,データのミニバッチのみを用いてグラフを更新する時間変化グラフトポロジを反復的に学習する手法を提案する。
合成データと実データの両方を用いたシミュレーションは、重み付きデータ、特に金融市場で見られるデータを分析する上で、我々のモデルの有効性を示す。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Backbone-based Dynamic Graph Spatio-Temporal Network for Epidemic
Forecasting [3.382729969842304]
正確な流行予測は伝染病の予防に重要な課題である。
多くのディープラーニングベースのモデルは、空間情報を構築する際に静的グラフや動的グラフにのみフォーカスする。
バックボーンに基づく動的グラフ時空間ネットワーク(BDGSTN)という新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-01T10:34:03Z) - Sparsity exploitation via discovering graphical models in multi-variate
time-series forecasting [1.2762298148425795]
本稿では,グラフ生成モジュールとGNN予測モジュールを含む分離学習手法を提案する。
まず、Graphical Lasso(またはGraphLASSO)を使用して、データから空間パターンを直接利用してグラフ構造を構築します。
次に、これらのグラフ構造と入力データをGCRN(Graph Convolutional Recurrent Network)に適合させて予測モデルをトレーニングする。
論文 参考訳(メタデータ) (2023-06-29T16:48:00Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
本稿では、欠落したデータポイントを再構築するための効果的なモデル学習の課題に取り組む。
我々は,高度にスパースな観測値の集合を与えられた注意に基づくアーキテクチャのクラスを提案し,時間と空間における点の表現を学習する。
技術状況と比較して、我々のモデルは予測エラーを伝播したり、前方および後方の時間依存性をエンコードするために双方向モデルを必要とすることなくスパースデータを処理します。
論文 参考訳(メタデータ) (2022-05-26T16:40:48Z) - Data-Free Adversarial Knowledge Distillation for Graph Neural Networks [62.71646916191515]
グラフ構造化データ(DFAD-GNN)を用いたデータフリー逆知識蒸留のための第1のエンドツーエンドフレームワークを提案する。
具体的には、DFAD-GNNは、教師モデルと学生モデルとを2つの識別器とみなし、教師モデルから学生モデルに知識を抽出するために学習グラフを導出するジェネレータという、主に3つの成分からなる生成的対向ネットワークを採用している。
我々のDFAD-GNNは、グラフ分類タスクにおける最先端のデータフリーベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2022-05-08T08:19:40Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Learning Sparse and Continuous Graph Structures for Multivariate Time
Series Forecasting [5.359968374560132]
Learning Sparse and Continuous Graphs for Forecasting (LSCGF)は、グラフ学習と予測に結合する新しいディープラーニングモデルである。
本稿では,スムーズ・スパース・ユニット (SSU) という新しい手法を提案する。
我々のモデルは、訓練可能な小さなパラメータで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-01-24T13:35:37Z) - Dynamic Graph Learning-Neural Network for Multivariate Time Series
Modeling [2.3022070933226217]
静的および動的グラフ学習ニューラルネットワーク(GL)という新しいフレームワークを提案する。
モデルはそれぞれ、データから静的グラフ行列と動的グラフ行列を取得し、長期パターンと短期パターンをモデル化する。
ほぼすべてのデータセットで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-12-06T08:19:15Z) - Distributionally Robust Semi-Supervised Learning Over Graphs [68.29280230284712]
グラフ構造化データに対する半教師付き学習(SSL)は、多くのネットワークサイエンスアプリケーションに現れる。
グラフ上の学習を効率的に管理するために,近年,グラフニューラルネットワーク(GNN)の変種が開発されている。
実際に成功したにも拘わらず、既存の手法のほとんどは、不確実な結節属性を持つグラフを扱うことができない。
ノイズ測定によって得られたデータに関連する分布の不確実性によっても問題が発生する。
分散ロバストな学習フレームワークを開発し,摂動に対する定量的ロバスト性を示すモデルを訓練する。
論文 参考訳(メタデータ) (2021-10-20T14:23:54Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。