Titans: Learning to Memorize at Test Time
- URL: http://arxiv.org/abs/2501.00663v1
- Date: Tue, 31 Dec 2024 22:32:03 GMT
- Title: Titans: Learning to Memorize at Test Time
- Authors: Ali Behrouz, Peilin Zhong, Vahab Mirrokni,
- Abstract summary: We present a new neural long-term memory module that learns to memorize historical context.
We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference.
We introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture.
- Score: 20.12643072017223
- License:
- Abstract: Over more than a decade there has been an extensive research effort on how to effectively utilize recurrent models and attention. While recurrent models aim to compress the data into a fixed-size memory (called hidden state), attention allows attending to the entire context window, capturing the direct dependencies of all tokens. This more accurate modeling of dependencies, however, comes with a quadratic cost, limiting the model to a fixed-length context. We present a new neural long-term memory module that learns to memorize historical context and helps attention to attend to the current context while utilizing long past information. We show that this neural memory has the advantage of fast parallelizable training while maintaining a fast inference. From a memory perspective, we argue that attention due to its limited context but accurate dependency modeling performs as a short-term memory, while neural memory due to its ability to memorize the data, acts as a long-term, more persistent, memory. Based on these two modules, we introduce a new family of architectures, called Titans, and present three variants to address how one can effectively incorporate memory into this architecture. Our experimental results on language modeling, common-sense reasoning, genomics, and time series tasks show that Titans are more effective than Transformers and recent modern linear recurrent models. They further can effectively scale to larger than 2M context window size with higher accuracy in needle-in-haystack tasks compared to baselines.
Related papers
- Taipan: Efficient and Expressive State Space Language Models with Selective Attention [100.16383527459429]
Long-context language modeling is a significant challenge in Natural Language Processing (NLP)
Recent State Space Models (SSMs) such as Mamba offer alternatives with constant memory usage, but they underperform in tasks requiring extensive in-context retrieval.
We introduce Taipan, a novel hybrid architecture that combines Mamba-2 with Selective Attention Layers (SALs)
Our experiments demonstrate Taipan's superior performance across various scales and tasks, offering a promising solution for efficient long-context language modeling.
arXiv Detail & Related papers (2024-10-24T09:25:37Z) - Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
Current deep-learning memory models struggle in reinforcement learning environments that are partially observable and long-term.
We introduce the Stable Hadamard Memory, a novel memory model for reinforcement learning agents.
Our approach significantly outperforms state-of-the-art memory-based methods on challenging partially observable benchmarks.
arXiv Detail & Related papers (2024-10-14T03:50:17Z) - HMT: Hierarchical Memory Transformer for Efficient Long Context Language Processing [33.720656946186885]
Hierarchical Memory Transformer (HMT) is a novel framework that facilitates a model's long-context processing ability.
HMT consistently improves the long-context processing ability of existing models.
arXiv Detail & Related papers (2024-05-09T19:32:49Z) - Augmenting Language Models with Long-Term Memory [142.04940250657637]
Existing large language models (LLMs) can only afford fix-sized inputs due to the input length limit.
We propose a framework, Language Models Augmented with Long-Term Memory (LongMem), which enables LLMs to memorize long history.
arXiv Detail & Related papers (2023-06-12T15:13:39Z) - LaMemo: Language Modeling with Look-Ahead Memory [50.6248714811912]
We propose Look-Ahead Memory (LaMemo) that enhances the recurrence memory by incrementally attending to the right-side tokens.
LaMemo embraces bi-directional attention and segment recurrence with an additional overhead only linearly proportional to the memory length.
Experiments on widely used language modeling benchmarks demonstrate its superiority over the baselines equipped with different types of memory.
arXiv Detail & Related papers (2022-04-15T06:11:25Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
Recurrent neural networks (RNNs) are a widely used deep architecture for sequence modeling, generation, and prediction.
RNNs generalize poorly over very long sequences, which limits their applicability to many important temporal processing and time series forecasting problems.
One way to address these shortcomings is to couple an RNN with an external, differentiable memory structure, such as a stack.
In this paper, we improve the memory-augmented RNN with important architectural and state updating mechanisms.
arXiv Detail & Related papers (2020-04-04T14:19:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.