LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management
- URL: http://arxiv.org/abs/2501.00826v2
- Date: Tue, 07 Jan 2025 00:15:11 GMT
- Title: LLM-Powered Multi-Agent System for Automated Crypto Portfolio Management
- Authors: Yichen Luo, Yebo Feng, Jiahua Xu, Paolo Tasca, Yang Liu,
- Abstract summary: We propose an explainable, multi-modal, multi-agent framework for cryptocurrency investment.
Our framework uses specialized agents that collaborate within and across teams to handle subtasks such as data analysis, literature integration, and investment decision-making.
- Score: 9.9661459222949
- License:
- Abstract: Cryptocurrency investment is inherently difficult due to its shorter history compared to traditional assets, the need to integrate vast amounts of data from various modalities, and the requirement for complex reasoning. While deep learning approaches have been applied to address these challenges, their black-box nature raises concerns about trust and explainability. Recently, large language models (LLMs) have shown promise in financial applications due to their ability to understand multi-modal data and generate explainable decisions. However, single LLM faces limitations in complex, comprehensive tasks such as asset investment. These limitations are even more pronounced in cryptocurrency investment, where LLMs have less domain-specific knowledge in their training corpora. To overcome these challenges, we propose an explainable, multi-modal, multi-agent framework for cryptocurrency investment. Our framework uses specialized agents that collaborate within and across teams to handle subtasks such as data analysis, literature integration, and investment decision-making for the top 30 cryptocurrencies by market capitalization. The expert training module fine-tunes agents using multi-modal historical data and professional investment literature, while the multi-agent investment module employs real-time data to make informed cryptocurrency investment decisions. Unique intrateam and interteam collaboration mechanisms enhance prediction accuracy by adjusting final predictions based on confidence levels within agent teams and facilitating information sharing between teams. Empirical evaluation using data from November 2023 to September 2024 demonstrates that our framework outperforms single-agent models and market benchmarks in classification, asset pricing, portfolio, and explainability performance.
Related papers
- Position: Empowering Time Series Reasoning with Multimodal LLMs [49.73647759532127]
We argue that multimodal language models (MLLMs) can enable more powerful and flexible reasoning for time series analysis.
We call on researchers and practitioners to leverage this potential by developing strategies that prioritize trust, interpretability, and robust reasoning in MLLMs.
arXiv Detail & Related papers (2025-02-03T16:10:48Z) - TradingAgents: Multi-Agents LLM Financial Trading Framework [4.293484524693143]
TradingAgents proposes a novel stock trading framework inspired by trading firms.
It features LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles.
By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance.
arXiv Detail & Related papers (2024-12-28T12:54:06Z) - FinVision: A Multi-Agent Framework for Stock Market Prediction [0.0]
This research introduces a multi-modal multi-agent system designed specifically for financial trading tasks.
A key feature of our approach is the integration of a reflection module, which conducts analyses of historical trading signals and their outcomes.
arXiv Detail & Related papers (2024-10-29T06:02:28Z) - Automate Strategy Finding with LLM in Quant investment [4.46212317245124]
We propose a novel framework for quantitative stock investment in portfolio management and alpha mining.
This paper proposes a framework where large language models (LLMs) mine alpha factors from multimodal financial data.
Experiments on the Chinese stock markets demonstrate that this framework significantly outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-10T07:42:28Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
We have developed a multi-agent AI system called StockAgent, driven by LLMs.
The StockAgent allows users to evaluate the impact of different external factors on investor trading.
It avoids the test set leakage issue present in existing trading simulation systems based on AI Agents.
arXiv Detail & Related papers (2024-07-15T06:49:30Z) - MultiTrust: A Comprehensive Benchmark Towards Trustworthy Multimodal Large Language Models [51.19622266249408]
MultiTrust is the first comprehensive and unified benchmark on the trustworthiness of MLLMs.
Our benchmark employs a rigorous evaluation strategy that addresses both multimodal risks and cross-modal impacts.
Extensive experiments with 21 modern MLLMs reveal some previously unexplored trustworthiness issues and risks.
arXiv Detail & Related papers (2024-06-11T08:38:13Z) - FinBen: A Holistic Financial Benchmark for Large Language Models [75.09474986283394]
FinBen is the first extensive open-source evaluation benchmark, including 36 datasets spanning 24 financial tasks.
FinBen offers several key innovations: a broader range of tasks and datasets, the first evaluation of stock trading, novel agent and Retrieval-Augmented Generation (RAG) evaluation, and three novel open-source evaluation datasets for text summarization, question answering, and stock trading.
arXiv Detail & Related papers (2024-02-20T02:16:16Z) - FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and
Character Design [11.913409501633616]
textscFinMem is a novel LLM-based agent framework devised for financial decision-making.
textscFinMem's memory module aligns closely with the cognitive structure of human traders, offering robust interpretability.
This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions.
arXiv Detail & Related papers (2023-11-23T00:24:40Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.