論文の概要: LLM+AL: Bridging Large Language Models and Action Languages for Complex Reasoning about Actions
- arxiv url: http://arxiv.org/abs/2501.00830v1
- Date: Wed, 01 Jan 2025 13:20:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:16:50.347197
- Title: LLM+AL: Bridging Large Language Models and Action Languages for Complex Reasoning about Actions
- Title(参考訳): LLM+AL:アクションに関する複雑な推論のための大規模言語モデルとアクション言語をブリッジする
- Authors: Adam Ishay, Joohyung Lee,
- Abstract要約: LLM+ALは,LLMの自然言語理解能力を,行動言語の記号的推論強度で橋渡しする手法である。
LLM+AL"はChatGPT-4, Claude 3 Opus, Gemini Ultra 1.0, o1-previewなど,最先端のLLMと比較する。
以上の結果から,LLM+ALは比較的最小限の修正しか行わないが,常に正しい解が得られることが示唆された。
- 参考スコア(独自算出の注目度): 7.575628120822444
- License:
- Abstract: Large Language Models (LLMs) have made significant strides in various intelligent tasks but still struggle with complex action reasoning tasks that require systematic search. To address this limitation, we propose a method that bridges the natural language understanding capabilities of LLMs with the symbolic reasoning strengths of action languages. Our approach, termed "LLM+AL," leverages the LLM's strengths in semantic parsing and commonsense knowledge generation alongside the action language's proficiency in automated reasoning based on encoded knowledge. We compare LLM+AL against state-of-the-art LLMs, including ChatGPT-4, Claude 3 Opus, Gemini Ultra 1.0, and o1-preview, using benchmarks for complex reasoning about actions. Our findings indicate that, although all methods exhibit errors, LLM+AL, with relatively minimal human corrections, consistently leads to correct answers, whereas standalone LLMs fail to improve even with human feedback. LLM+AL also contributes to automated generation of action languages.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な知的タスクにおいて大きな進歩を遂げてきたが、体系的な検索を必要とする複雑なアクション推論タスクに苦戦している。
この制限に対処するために,LLMの自然言語理解能力と行動言語の記号的推論強度を橋渡しする手法を提案する。
我々のアプローチは「LLM+AL」と呼ばれ、意味解析におけるLLMの強みと、符号化された知識に基づく自動推論におけるアクション言語の習熟度とを併用したコモンセンス知識の生成を活用している。
LLM+ALをChatGPT-4、Claude 3 Opus、Gemini Ultra 1.0、o1-previewなどの最先端のLCMと比較し、アクションに関する複雑な推論のためのベンチマークを用いた。
以上の結果から,全ての手法が誤りを示すが,LLM+ALは比較的最小限の修正で常に正解を導き,一方,スタンドアロンのLLMは人間のフィードバックを伴っても改善しなかったことが示唆された。
LLM+ALはアクション言語の自動生成にも貢献している。
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - LLMs' Understanding of Natural Language Revealed [0.0]
大規模言語モデル(LLM)は、大規模言語におけるボトムアップ、データ駆動のリバースエンジニアリングにおける大規模な実験の結果である。
私たちはLLMの言語理解能力、彼らが想定する砦をテストすることに重点を置きます。
論文 参考訳(メタデータ) (2024-07-29T01:21:11Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
大規模言語モデルの自己改善のためのAlphaLLMを紹介する。
モンテカルロ木探索(MCTS)とLLMを統合し、自己改善ループを確立する。
実験の結果,AlphaLLM は付加アノテーションを使わずに LLM の性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2024-04-18T15:21:34Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
大規模言語モデル(LLM)は、主に様々なテキスト理解および生成タスクにおける全体的なパフォーマンスによって評価される。
FAC$2$E, FAC$2$Eについて述べる。
論文 参考訳(メタデータ) (2024-02-29T21:05:37Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - Boosting Large Language Model for Speech Synthesis: An Empirical Study [86.89548753080432]
大規模言語モデル(LLM)は自然言語処理において大きな進歩を遂げており、言語能力は音声や視覚など他のモダリティにも拡張されている。
我々は,事前学習したLLM LLaMA/OPTと音声合成モデルVALL-Eを組み合わせることで,LLMの強化と音声生成能力の総合的な実証調査を行う。
テキストエンコーダとしてLLMとVALL-Eを組み合わせることで,LLMとVALL-Eの3つの統合手法を比較した。
論文 参考訳(メタデータ) (2023-12-30T14:20:04Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - DialogueLLM: Context and Emotion Knowledge-Tuned Large Language Models
for Emotion Recognition in Conversations [28.15933355881604]
大規模言語モデル(LLM)は、多くの下流自然言語処理(NLP)タスクに対して異常な有効性を示している。
LLaMAモデルの微調整により得られた文脈と感情の知識をチューニングしたLLMであるダイアログLLMを提案する。
会話データセットにおける3つの感情認識のベンチマークについて,提案手法の総合評価を行った。
論文 参考訳(メタデータ) (2023-10-17T16:15:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。