FullTransNet: Full Transformer with Local-Global Attention for Video Summarization
- URL: http://arxiv.org/abs/2501.00882v2
- Date: Thu, 07 Aug 2025 10:00:01 GMT
- Title: FullTransNet: Full Transformer with Local-Global Attention for Video Summarization
- Authors: Libin Lan, Lu Jiang, Tianshu Yu, Xiaojuan Liu, Zhongshi He,
- Abstract summary: We propose a transformer-like architecture named FullTransNet for video summarization.<n>It uses a full transformer with an encoder-decoder structure as an alternative architecture for video summarization.<n>Our model achieves F-scores of 54.4% and 63.9%, respectively, while maintaining relatively low computational and memory requirements.
- Score: 16.134118247239527
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video summarization aims to generate a compact, informative, and representative synopsis of raw videos, which is crucial for browsing, analyzing, and understanding video content. Dominant approaches in video summarization primarily rely on recurrent or convolutional neural networks, and more recently on encoder-only transformer architectures. However, these methods typically suffer from several limitations in parallelism, modeling long-range dependencies, and providing explicit generative capabilities. To address these issues, we propose a transformer-like architecture named FullTransNet with two-fold ideas. First, it uses a full transformer with an encoder-decoder structure as an alternative architecture for video summarization. As the full transformer is specifically designed for sequence transduction tasks, its direct application to video summarization is both intuitive and effective. Second, it replaces the standard full attention mechanism with a combination of local and global sparse attention, enabling the model to capture long-range dependencies while significantly reducing computational costs. This local-global sparse attention is applied exclusively at the encoder side, where the majority of computations occur, further enhancing efficiency. Extensive experiments on two widely used benchmark datasets, SumMe and TVSum, demonstrate that our model achieves F-scores of 54.4% and 63.9%, respectively, while maintaining relatively low computational and memory requirements. These results surpass the second-best performing methods by 0.1% and 0.3%, respectively, verifying the effectiveness and efficiency of FullTransNet.
Related papers
- Progressive Token Length Scaling in Transformer Encoders for Efficient Universal Segmentation [67.85309547416155]
A powerful architecture for universal segmentation relies on transformers that encode multi-scale image features and decode object queries into mask predictions.
With efficiency being a high priority for scaling such models, we observed that the state-of-the-art method Mask2Former uses 50% of its compute only on the transformer encoder.
This is due to the retention of a full-length token-level representation of all backbone feature scales at each encoder layer.
arXiv Detail & Related papers (2024-04-23T01:34:20Z) - ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
We propose an advanced 2D feature extraction method by combining the convolutional neural network and Transformer architectures.
Our method is shown with better segmentation accuracy, especially on small organs.
arXiv Detail & Related papers (2024-01-27T05:58:36Z) - Efficient Convolution and Transformer-Based Network for Video Frame
Interpolation [11.036815066639473]
A novel method integrating a transformer encoder and convolutional features is proposed.
This network reduces the memory burden by close to 50% and runs up to four times faster during inference time.
A dual-encoder architecture is introduced which combines the strength of convolutions in modelling local correlations with those of the transformer for long-range dependencies.
arXiv Detail & Related papers (2023-07-12T20:14:06Z) - Cats: Complementary CNN and Transformer Encoders for Segmentation [13.288195115791758]
We propose a model with double encoders for 3D biomedical image segmentation.
We fuse the information from the convolutional encoder and the transformer, and pass it to the decoder to obtain the results.
Compared to the state-of-the-art models with and without transformers on each task, our proposed method obtains higher Dice scores across the board.
arXiv Detail & Related papers (2022-08-24T14:25:11Z) - Two-Stream Transformer Architecture for Long Video Understanding [5.001789577362836]
This paper introduces an efficient Spatio-Temporal Attention Network (STAN) which uses a two-stream transformer architecture to model dependencies between static image features and temporal contextual features.
Our proposed approach can classify videos up to two minutes in length on a single GPU, is data efficient, and achieves SOTA performance on several long video understanding tasks.
arXiv Detail & Related papers (2022-08-02T21:03:48Z) - All in One: Exploring Unified Video-Language Pre-training [44.22059872694995]
We introduce an end-to-end video-language model, namely textitall-in-one Transformer, that embeds raw video and textual signals into joint representations.
The code and pretrained model have been released in https://github.com/showlab/all-in-one.
arXiv Detail & Related papers (2022-03-14T17:06:30Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z) - Video Transformers: A Survey [42.314208650554264]
We study the contributions and trends for adapting Transformers to model video data.
Specifically, we delve into how videos are embedded and tokenized, finding a very widspread use of large CNN backbones.
Also, we analyse the self-supervised losses used to train Video Transformers, which to date are mostly constrained to contrastive approaches.
arXiv Detail & Related papers (2022-01-16T07:31:55Z) - DualFormer: Local-Global Stratified Transformer for Efficient Video
Recognition [140.66371549815034]
We propose a new transformer architecture, termed DualFormer, which can effectively and efficiently perform space-time attention for video recognition.
We show that DualFormer sets new state-of-the-art 82.9%/85.2% top-1 accuracy on Kinetics-400/600 with around 1000G inference FLOPs which is at least 3.2 times fewer than existing methods with similar performances.
arXiv Detail & Related papers (2021-12-09T03:05:19Z) - Video Frame Interpolation Transformer [86.20646863821908]
We propose a Transformer-based video framework that allows content-aware aggregation weights and considers long-range dependencies with the self-attention operations.
To avoid the high computational cost of global self-attention, we introduce the concept of local attention into video.
In addition, we develop a multi-scale frame scheme to fully realize the potential of Transformers.
arXiv Detail & Related papers (2021-11-27T05:35:10Z) - Hierarchical Multimodal Transformer to Summarize Videos [103.47766795086206]
Motivated by the great success of transformer and the natural structure of video (frame-shot-video), a hierarchical transformer is developed for video summarization.
To integrate the two kinds of information, they are encoded in a two-stream scheme, and a multimodal fusion mechanism is developed based on the hierarchical transformer.
Practically, extensive experiments show that HMT surpasses most of the traditional, RNN-based and attention-based video summarization methods.
arXiv Detail & Related papers (2021-09-22T07:38:59Z) - Token Shift Transformer for Video Classification [34.05954523287077]
Transformer achieves remarkable successes in understanding 1 and 2-dimensional signals.
Its encoders naturally contain computational intensive operations such as pair-wise self-attention.
This paper presents Token Shift Module (i.e., TokShift) for modeling temporal relations within each transformer encoder.
arXiv Detail & Related papers (2021-08-05T08:04:54Z) - Space-time Mixing Attention for Video Transformer [55.50839896863275]
We propose a Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence.
We demonstrate that our model produces very high recognition accuracy on the most popular video recognition datasets.
arXiv Detail & Related papers (2021-06-10T17:59:14Z) - TransVOS: Video Object Segmentation with Transformers [13.311777431243296]
We propose a vision transformer to fully exploit and model both the temporal and spatial relationships.
To slim the popular two-encoder pipeline, we design a single two-path feature extractor.
Experiments demonstrate the superiority of our TransVOS over state-of-the-art methods on both DAVIS and YouTube-VOS datasets.
arXiv Detail & Related papers (2021-06-01T15:56:10Z) - Rethinking Global Context in Crowd Counting [70.54184500538338]
A pure transformer is used to extract features with global information from overlapping image patches.
Inspired by classification, we add a context token to the input sequence, to facilitate information exchange with tokens corresponding to image patches.
arXiv Detail & Related papers (2021-05-23T12:44:27Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - Transformers Solve the Limited Receptive Field for Monocular Depth
Prediction [82.90445525977904]
We propose TransDepth, an architecture which benefits from both convolutional neural networks and transformers.
This is the first paper which applies transformers into pixel-wise prediction problems involving continuous labels.
arXiv Detail & Related papers (2021-03-22T18:00:13Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.