Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization
- URL: http://arxiv.org/abs/2501.00888v1
- Date: Wed, 01 Jan 2025 16:28:21 GMT
- Title: Unfolding the Headline: Iterative Self-Questioning for News Retrieval and Timeline Summarization
- Authors: Weiqi Wu, Shen Huang, Yong Jiang, Pengjun Xie, Fei Huang, Hai Zhao,
- Abstract summary: This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning.
Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications.
- Score: 93.56166917491487
- License:
- Abstract: In the fast-changing realm of information, the capacity to construct coherent timelines from extensive event-related content has become increasingly significant and challenging. The complexity arises in aggregating related documents to build a meaningful event graph around a central topic. This paper proposes CHRONOS - Causal Headline Retrieval for Open-domain News Timeline SummarizatiOn via Iterative Self-Questioning, which offers a fresh perspective on the integration of Large Language Models (LLMs) to tackle the task of Timeline Summarization (TLS). By iteratively reflecting on how events are linked and posing new questions regarding a specific news topic to gather information online or from an offline knowledge base, LLMs produce and refresh chronological summaries based on documents retrieved in each round. Furthermore, we curate Open-TLS, a novel dataset of timelines on recent news topics authored by professional journalists to evaluate open-domain TLS where information overload makes it impossible to find comprehensive relevant documents from the web. Our experiments indicate that CHRONOS is not only adept at open-domain timeline summarization, but it also rivals the performance of existing state-of-the-art systems designed for closed-domain applications, where a related news corpus is provided for summarization.
Related papers
- Just What You Desire: Constrained Timeline Summarization with Self-Reflection for Enhanced Relevance [22.53244715723573]
We introduce a novel task, called Constrained Timeline Summarization (CTLS), where a timeline is generated in which all events in the timeline meet some constraint.
We propose an approach that employs a large language model (LLM) to summarize news articles according to a specified constraint and cluster them to identify key events to include in a constrained timeline.
arXiv Detail & Related papers (2024-12-23T09:17:06Z) - Neon: News Entity-Interaction Extraction for Enhanced Question Answering [2.7661475645321256]
We present the NEON framework, designed to extract emerging entity interactions as described in news articles.
NEON constructs an entity-centric timestamped knowledge graph that captures such interactions.
Our framework innovates by integrating open Information Extraction (openIE) styles into large language models.
arXiv Detail & Related papers (2024-11-19T12:17:43Z) - Analyzing Temporal Complex Events with Large Language Models? A Benchmark towards Temporal, Long Context Understanding [57.62275091656578]
We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE)
This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE.
arXiv Detail & Related papers (2024-06-04T16:42:17Z) - Background Summarization of Event Timelines [13.264991569806572]
We introduce the task of background news summarization, which complements each timeline update with a background summary of relevant preceding events.
We construct a dataset by merging existing timeline datasets and asking human annotators to write a background summary for each timestep of each news event.
We establish strong baseline performance using state-of-the-art summarization systems and propose a query-focused variant to generate background summaries.
arXiv Detail & Related papers (2023-10-24T21:30:15Z) - Follow the Timeline! Generating Abstractive and Extractive Timeline
Summary in Chronological Order [78.46986998674181]
We propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order.
We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset.
UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
arXiv Detail & Related papers (2023-01-02T20:29:40Z) - Zero-Shot On-the-Fly Event Schema Induction [61.91468909200566]
We present a new approach in which large language models are utilized to generate source documents that allow predicting, given a high-level event definition, the specific events, arguments, and relations between them.
Using our model, complete schemas on any topic can be generated on-the-fly without any manual data collection, i.e., in a zero-shot manner.
arXiv Detail & Related papers (2022-10-12T14:37:00Z) - NECE: Narrative Event Chain Extraction Toolkit [64.89332212585404]
We introduce NECE, an open-access, document-level toolkit that automatically extracts and aligns narrative events in the temporal order of their occurrence.
We show the high quality of the NECE toolkit and demonstrate its downstream application in analyzing narrative bias regarding gender.
We also openly discuss the shortcomings of the current approach, and potential of leveraging generative models in future works.
arXiv Detail & Related papers (2022-08-17T04:30:58Z) - A Large-Scale Multi-Document Summarization Dataset from the Wikipedia
Current Events Portal [10.553314461761968]
Multi-document summarization (MDS) aims to compress the content in large document collections into short summaries.
This work presents a new dataset for MDS that is large both in the total number of document clusters and in the size of individual clusters.
arXiv Detail & Related papers (2020-05-20T14:33:33Z) - From Standard Summarization to New Tasks and Beyond: Summarization with
Manifold Information [77.89755281215079]
Text summarization is the research area aiming at creating a short and condensed version of the original document.
In real-world applications, most of the data is not in a plain text format.
This paper focuses on the survey of these new summarization tasks and approaches in the real-world application.
arXiv Detail & Related papers (2020-05-10T14:59:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.