論文の概要: Optimizing Noise Schedules of Generative Models in High Dimensionss
- arxiv url: http://arxiv.org/abs/2501.00988v1
- Date: Thu, 02 Jan 2025 00:39:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:00.801213
- Title: Optimizing Noise Schedules of Generative Models in High Dimensionss
- Title(参考訳): 高次元における生成モデルのノイズスケジューリングの最適化
- Authors: Santiago Aranguri, Giulio Biroli, Marc Mezard, Eric Vanden-Eijnden,
- Abstract要約: 分散(VP)と分散爆発(VE)の保存に特有なノイズスケジュールは,高次特徴と低次特徴の両方の回復を可能にすることを示す。
また、これらのスケジュールは、確率フローODEを識別可能なGMとCurie-Weiss(CW)モデルの生成モデルが得られることを示す。
- 参考スコア(独自算出の注目度): 18.19470017419402
- License:
- Abstract: Recent works have shown that diffusion models can undergo phase transitions, the resolution of which is needed for accurately generating samples. This has motivated the use of different noise schedules, the two most common choices being referred to as variance preserving (VP) and variance exploding (VE). Here we revisit these schedules within the framework of stochastic interpolants. Using the Gaussian Mixture (GM) and Curie-Weiss (CW) data distributions as test case models, we first investigate the effect of the variance of the initial noise distribution and show that VP recovers the low-level feature (the distribution of each mode) but misses the high-level feature (the asymmetry between modes), whereas VE performs oppositely. We also show that this dichotomy, which happens when denoising by a constant amount in each step, can be avoided by using noise schedules specific to VP and VE that allow for the recovery of both high- and low-level features. Finally we show that these schedules yield generative models for the GM and CW model whose probability flow ODE can be discretized using $\Theta_d(1)$ steps in dimension $d$ instead of the $\Theta_d(\sqrt{d})$ steps required by constant denoising.
- Abstract(参考訳): 近年の研究では、拡散モデルが相転移を起こせることが示されており、その分解能は試料を正確に生成するのに必要である。
これは異なるノイズスケジュールの使用を動機付けており、最も一般的な2つの選択は分散保存(VP)と分散爆発(VE)と呼ばれている。
ここでは、確率補間子の枠組みの中でこれらのスケジュールを再考する。
実験ケースモデルとしてGaussian Mixture(GM)とCurie-Weiss(CW)のデータ分布を用いて、まず初期雑音分布の分散の影響を調査し、VPが低レベル特徴(各モードの分布)を回復するが、高レベル特徴(モード間の非対称性)を見逃すことを示す。
また、この二分法は、各ステップで一定量のノイズを発生させる際に発生するもので、VPとVEに特有のノイズスケジュールを用いることで、高次特徴と低次特徴の両方の回復を可能にする。
最後に、これらのスケジュールは、確率フローODE を $\Theta_d(1)$ 次元 $d$ のステップで離散化できる GM および CW モデルの生成モデルが得られることを示す。
関連論文リスト
- A Sharp Convergence Theory for The Probability Flow ODEs of Diffusion Models [45.60426164657739]
拡散型サンプリング器の非漸近収束理論を開発する。
我々は、$d/varepsilon$がターゲット分布を$varepsilon$トータル偏差距離に近似するのに十分であることを証明した。
我々の結果は、$ell$のスコア推定誤差がデータ生成プロセスの品質にどのように影響するかも特徴付ける。
論文 参考訳(メタデータ) (2024-08-05T09:02:24Z) - Score-based Generative Models with Adaptive Momentum [40.84399531998246]
変換過程を高速化する適応運動量サンプリング法を提案する。
提案手法は,2倍から5倍の速度で,より忠実な画像/グラフを小さなサンプリングステップで作成できることを示す。
論文 参考訳(メタデータ) (2024-05-22T15:20:27Z) - Gaussian Mixture Solvers for Diffusion Models [84.83349474361204]
本稿では,拡散モデルのためのGMSと呼ばれる,SDEに基づく新しい解法について紹介する。
画像生成およびストロークベース合成におけるサンプル品質の観点から,SDEに基づく多くの解法よりも優れる。
論文 参考訳(メタデータ) (2023-11-02T02:05:38Z) - AdjointDPM: Adjoint Sensitivity Method for Gradient Backpropagation of Diffusion Probabilistic Models [103.41269503488546]
既存のカスタマイズ方法は、事前訓練された拡散確率モデルをユーザが提供する概念に合わせるために、複数の参照例にアクセスする必要がある。
本論文は、DPMカスタマイズの課題として、生成コンテンツ上で定義された差別化可能な指標が唯一利用可能な監督基準である場合に解決することを目的とする。
本稿では,拡散モデルから新しいサンプルを初めて生成するAdjointDPMを提案する。
次に、随伴感度法を用いて、損失の勾配をモデルのパラメータにバックプロパゲートする。
論文 参考訳(メタデータ) (2023-07-20T09:06:21Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Doubly Stochastic Models: Learning with Unbiased Label Noises and
Inference Stability [85.1044381834036]
勾配降下のミニバッチサンプリング設定におけるラベル雑音の暗黙的正則化効果について検討した。
そのような暗黙的正則化器は、パラメータの摂動に対してモデル出力を安定化できる収束点を好んでいる。
我々の研究は、SGDをオルンシュタイン-ウレンベック類似の過程とはみなせず、近似の収束によってより一般的な結果を得る。
論文 参考訳(メタデータ) (2023-04-01T14:09:07Z) - Denoising Diffusion Samplers [41.796349001299156]
拡散モデルの認知は、多くの領域で最先端の結果を提供する生成モデルの一般的なクラスである。
我々は、非正規化確率密度関数から大まかにサンプリングし、それらの正規化定数を推定する類似のアイデアを探求する。
この文脈ではスコアマッチングは適用できないが、モンテカルロサンプリングのために生成的モデリングで導入された多くのアイデアを利用することができる。
論文 参考訳(メタデータ) (2023-02-27T14:37:16Z) - Image Generation with Multimodal Priors using Denoising Diffusion
Probabilistic Models [54.1843419649895]
このタスクを達成するために生成モデルを使用する際の大きな課題は、すべてのモダリティと対応する出力を含むペアデータの欠如である。
本稿では,拡散確率的合成モデルに基づく多モデル先行画像生成手法を提案する。
論文 参考訳(メタデータ) (2022-06-10T12:23:05Z) - Subspace Diffusion Generative Models [4.310834990284412]
スコアベースモデルは、高次元拡散過程を通じて、ノイズをデータにマッピングすることでサンプルを生成する。
データ分布がノイズに向かって進化するにつれて、射影による部分空間への拡散を制限する。
私たちのフレームワークは継続的拡散と完全に互換性があり、柔軟性を維持しています。
論文 参考訳(メタデータ) (2022-05-03T13:43:47Z) - Score-Based Generative Modeling through Stochastic Differential
Equations [114.39209003111723]
複素データ分布を雑音を注入することによって既知の事前分布に変換する微分方程式を提案する。
対応する逆時間SDEは、ノイズを緩やかに除去し、先行分布をデータ分布に戻す。
スコアベース生成モデリングの進歩を活用することで、これらのスコアをニューラルネットワークで正確に推定することができる。
スコアベース生成モデルから1024×1024画像の高忠実度生成を初めて示す。
論文 参考訳(メタデータ) (2020-11-26T19:39:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。