Boosting Adversarial Transferability with Spatial Adversarial Alignment
- URL: http://arxiv.org/abs/2501.01015v1
- Date: Thu, 02 Jan 2025 02:35:47 GMT
- Title: Boosting Adversarial Transferability with Spatial Adversarial Alignment
- Authors: Zhaoyu Chen, Haijing Guo, Kaixun Jiang, Jiyuan Fu, Xinyu Zhou, Dingkang Yang, Hao Tang, Bo Li, Wenqiang Zhang,
- Abstract summary: Deep neural networks are vulnerable to adversarial examples that exhibit transferability across various models.
We propose a technique that employs an alignment loss and leverages a witness model to fine-tune the surrogate model.
Experiments on various architectures on ImageNet show that aligned surrogate models based on SAA can provide higher transferable adversarial examples.
- Score: 30.343721474168635
- License:
- Abstract: Deep neural networks are vulnerable to adversarial examples that exhibit transferability across various models. Numerous approaches are proposed to enhance the transferability of adversarial examples, including advanced optimization, data augmentation, and model modifications. However, these methods still show limited transferability, particularly in cross-architecture scenarios, such as from CNN to ViT. To achieve high transferability, we propose a technique termed Spatial Adversarial Alignment (SAA), which employs an alignment loss and leverages a witness model to fine-tune the surrogate model. Specifically, SAA consists of two key parts: spatial-aware alignment and adversarial-aware alignment. First, we minimize the divergences of features between the two models in both global and local regions, facilitating spatial alignment. Second, we introduce a self-adversarial strategy that leverages adversarial examples to impose further constraints, aligning features from an adversarial perspective. Through this alignment, the surrogate model is trained to concentrate on the common features extracted by the witness model. This facilitates adversarial attacks on these shared features, thereby yielding perturbations that exhibit enhanced transferability. Extensive experiments on various architectures on ImageNet show that aligned surrogate models based on SAA can provide higher transferable adversarial examples, especially in cross-architecture attacks.
Related papers
- Enhancing the Transferability of Adversarial Attacks on Face Recognition with Diverse Parameters Augmentation [29.5096732465412]
Face Recognition (FR) models are vulnerable to adversarial examples that subtly manipulate benign face images.
Existing adversarial attack methods often overlook the potential benefits of augmenting the surrogate model.
We propose a novel method called Diverse Parameters Augmentation (DPA) attack method.
arXiv Detail & Related papers (2024-11-23T13:22:37Z) - Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop [2.176586063731861]
A prevalent approach for adversarial attacks relies on the transferability of adversarial examples.
A novel framework based on Salient region & Weighted Feature Drop (SWFD) designed to enhance the targeted transferability of adversarial examples.
arXiv Detail & Related papers (2024-11-11T08:23:37Z) - Semantic-Aligned Adversarial Evolution Triangle for High-Transferability Vision-Language Attack [51.16384207202798]
Vision-language pre-training models are vulnerable to multimodal adversarial examples (AEs)
Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process.
We propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity.
arXiv Detail & Related papers (2024-11-04T23:07:51Z) - Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
Adversarial attacks can be used to assess the robustness of large visual-language models (VLMs)
Previous transfer-based adversarial attacks incur high costs due to high iteration counts and complex method structure.
We propose AdvDiffVLM, which uses diffusion models to generate natural, unrestricted and targeted adversarial examples.
arXiv Detail & Related papers (2024-04-16T07:19:52Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - OT-Attack: Enhancing Adversarial Transferability of Vision-Language
Models via Optimal Transport Optimization [65.57380193070574]
Vision-language pre-training models are vulnerable to multi-modal adversarial examples.
Recent works have indicated that leveraging data augmentation and image-text modal interactions can enhance the transferability of adversarial examples.
We propose an Optimal Transport-based Adversarial Attack, dubbed OT-Attack.
arXiv Detail & Related papers (2023-12-07T16:16:50Z) - Why Does Little Robustness Help? Understanding and Improving Adversarial
Transferability from Surrogate Training [24.376314203167016]
Adversarial examples (AEs) for DNNs have been shown to be transferable.
In this paper, we take a further step towards understanding adversarial transferability.
arXiv Detail & Related papers (2023-07-15T19:20:49Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Safety-compliant Generative Adversarial Networks for Human Trajectory
Forecasting [95.82600221180415]
Human forecasting in crowds presents the challenges of modelling social interactions and outputting collision-free multimodal distribution.
We introduce SGANv2, an improved safety-compliant SGAN architecture equipped with motion-temporal interaction modelling and a transformer-based discriminator design.
arXiv Detail & Related papers (2022-09-25T15:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.