論文の概要: Ultrasound Lung Aeration Map via Physics-Aware Neural Operators
- arxiv url: http://arxiv.org/abs/2501.01157v1
- Date: Thu, 02 Jan 2025 09:24:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:11:46.243306
- Title: Ultrasound Lung Aeration Map via Physics-Aware Neural Operators
- Title(参考訳): 物理対応型ニューラル演算子を用いた超音波肺エアレーションマップ
- Authors: Jiayun Wang, Oleksii Ostras, Masashi Sode, Bahareh Tolooshams, Zongyi Li, Kamyar Azizzadenesheli, Gianmarco Pinton, Anima Anandkumar,
- Abstract要約: 肺超音波は、急性肺疾患や慢性肺疾患を診断するクリニックにおいて増加するモダリティである。
超音波による空気透過性の低下に起因する胸膜界面からの複雑な逆流によって複雑になる。
RFデータから肺エアレーションマップを直接再構成するAIモデルLUNAを提案する。
- 参考スコア(独自算出の注目度): 78.6077820217471
- License:
- Abstract: Lung ultrasound is a growing modality in clinics for diagnosing and monitoring acute and chronic lung diseases due to its low cost and accessibility. Lung ultrasound works by emitting diagnostic pulses, receiving pressure waves and converting them into radio frequency (RF) data, which are then processed into B-mode images with beamformers for radiologists to interpret. However, unlike conventional ultrasound for soft tissue anatomical imaging, lung ultrasound interpretation is complicated by complex reverberations from the pleural interface caused by the inability of ultrasound to penetrate air. The indirect B-mode images make interpretation highly dependent on reader expertise, requiring years of training, which limits its widespread use despite its potential for high accuracy in skilled hands. To address these challenges and democratize ultrasound lung imaging as a reliable diagnostic tool, we propose LUNA, an AI model that directly reconstructs lung aeration maps from RF data, bypassing the need for traditional beamformers and indirect interpretation of B-mode images. LUNA uses a Fourier neural operator, which processes RF data efficiently in Fourier space, enabling accurate reconstruction of lung aeration maps. LUNA offers a quantitative, reader-independent alternative to traditional semi-quantitative lung ultrasound scoring methods. The development of LUNA involves synthetic and real data: We simulate synthetic data with an experimentally validated approach and scan ex vivo swine lungs as real data. Trained on abundant simulated data and fine-tuned with a small amount of real-world data, LUNA achieves robust performance, demonstrated by an aeration estimation error of 9% in ex-vivo lung scans. We demonstrate the potential of reconstructing lung aeration maps from RF data, providing a foundation for improving lung ultrasound reproducibility and diagnostic utility.
- Abstract(参考訳): 肺超音波は、その低コストとアクセシビリティのため、急性肺疾患および慢性肺疾患の診断およびモニタリングのための診療所で増加するモダリティである。
肺超音波は、診断パルスを出力し、圧力波を受信し、それを無線周波数(RF)データに変換し、それをビームフォーマでBモード画像に処理して、放射線学者が解釈する。
しかし, 従来の軟部組織解剖画像検査法とは異なり, 超音波が空気を透過できないことによる胸膜界面からの複雑な逆流により, 肺超音波の解釈は複雑である。
間接的なBモード画像は、読者の専門知識に非常に依存し、何年もの訓練を必要とする。
これらの課題に対処し,信頼性診断ツールとしての超音波肺画像の民主化を目的として,従来のビームフォーマの必要性を回避し,Bモード画像の間接的解釈を回避し,RFデータから肺エアレーションマップを直接再構築するAIモデルLUNAを提案する。
LUNAはフーリエニューラル演算子を使用し、フーリエ空間でRFデータを効率的に処理し、肺エアレーションマップの正確な再構築を可能にする。
LUNAは、従来の半定量的肺超音波検査法に代えて、定量的で読み手に依存しない代替手段を提供する。
LUNAの開発には、合成データと実際のデータが含まれる: 実験的に検証されたアプローチで合成データをシミュレートし、実データとして外生豚の肺をスキャンする。
LUNAは、豊富なシミュレーションデータに基づいて、少量の現実世界データで微調整を行い、前生検で9%のエアレーション推定誤差で、堅牢な性能を達成している。
RFデータから肺エアレーションマップを再構築する可能性を実証し,肺の再現性と診断の有用性を向上させる基盤を提供する。
関連論文リスト
- PHOCUS: Physics-Based Deconvolution for Ultrasound Resolution Enhancement [36.20701982473809]
超音波イメージングシステムのインパルス機能はポイントスプレッド機能(PSF)と呼ばれ、画像形成過程における反射体の空間分布と結びついている。
我々は、より一般的なBモード画像を直接扱う、モデル付きPSFを用いた物理ベースのデコンボリューションプロセスを導入する。
Inlicit Neural Representations (INR) を利用することで、空間位置からそれぞれのエコー原性値への連続的なマッピングを学習し、離散化された画像空間を効果的に補償する。
論文 参考訳(メタデータ) (2024-08-07T09:52:30Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - X-ray Dissectography Improves Lung Nodule Detection [14.672019886848755]
数個のX線投影から肺をデジタル的に解剖するために「X線ディストモグラフィー」が用いられる。
協調検出ネットワークは、肺結節を2次元の離断射影と3次元の物理的空間に局在させるように設計されている。
論文 参考訳(メタデータ) (2022-03-24T15:18:57Z) - Debiasing pipeline improves deep learning model generalization for X-ray
based lung nodule detection [11.228544549618068]
肺がんは世界中でがん死の主要な原因であり、予後は早期診断に依存している。
胸部X線像を均質化し,除染する画像前処理パイプラインは,内部分類と外部一般化の両方を改善することができることを示す。
進化的プルーニング機構は、一般に利用可能な肺結節X線データセットから最も情報性の高い画像に基づいて結節検出深層学習モデルを訓練するために用いられる。
論文 参考訳(メタデータ) (2022-01-24T10:08:07Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。