論文の概要: Towards Interactive Deepfake Analysis
- arxiv url: http://arxiv.org/abs/2501.01164v1
- Date: Thu, 02 Jan 2025 09:34:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:13:43.482611
- Title: Towards Interactive Deepfake Analysis
- Title(参考訳): インタラクティブなディープフェイク分析に向けて
- Authors: Lixiong Qin, Ning Jiang, Yang Zhang, Yuhan Qiu, Dingheng Zeng, Jiani Hu, Weihong Deng,
- Abstract要約: 本稿では,マルチモーダル大言語モデル(MLLM)の命令チューニングによる対話型ディープフェイク解析の探索を目的とする。
これらの課題に対処するために,(1)DFA-Instructと呼ばれるインストラクションフォローデータセットを実現するGPT支援データ構築プロセス,(2)DFA-Benchというベンチマーク,(3)DFA-GPTと呼ばれる対話型ディープフェイク分析システムをコミュニティの強力なベースラインとして構築する深度検出・深度分類・アーティファクト記述におけるMLLMの能力を包括的に評価することを目的とした,DFA-Benchというベンチマークを導入する。
- 参考スコア(独自算出の注目度): 40.0271474912034
- License:
- Abstract: Existing deepfake analysis methods are primarily based on discriminative models, which significantly limit their application scenarios. This paper aims to explore interactive deepfake analysis by performing instruction tuning on multi-modal large language models (MLLMs). This will face challenges such as the lack of datasets and benchmarks, and low training efficiency. To address these issues, we introduce (1) a GPT-assisted data construction process resulting in an instruction-following dataset called DFA-Instruct, (2) a benchmark named DFA-Bench, designed to comprehensively evaluate the capabilities of MLLMs in deepfake detection, deepfake classification, and artifact description, and (3) construct an interactive deepfake analysis system called DFA-GPT, as a strong baseline for the community, with the Low-Rank Adaptation (LoRA) module. The dataset and code will be made available at https://github.com/lxq1000/DFA-Instruct to facilitate further research.
- Abstract(参考訳): 既存のディープフェイク分析手法は主に差別モデルに基づいており、アプリケーションのシナリオを著しく制限している。
本稿では,マルチモーダル大言語モデル (MLLM) 上で命令チューニングを行うことにより,インタラクティブなディープフェイク解析を探索することを目的とする。
これはデータセットやベンチマークの欠如、トレーニング効率の低下といった課題に直面します。
これらの課題に対処するために,(1)DFA-Instructと呼ばれる命令追跡データセットを生成するGPT支援データ構築プロセス,(2)DFA-Benchというベンチマーク,(3)DFA-GPTと呼ばれる対話型ディープフェイク分析システムの構築,(3)低ランク適応(LoRA)モジュールを用いたコミュニティの強力なベースラインとして,MLLMの深度検出,深度分類,およびアーティファクト記述の能力を総合的に評価する。
データセットとコードはhttps://github.com/lxq1000/DFA-Instructで利用可能になる。
関連論文リスト
- A Comprehensive Analysis on LLM-based Node Classification Algorithms [21.120619437937382]
我々はLarge Language Models (LLMs) を用いたノード分類のための包括的でテストベッドを開発する。
10のデータセット、8つのLLMベースのアルゴリズム、3つの学習パラダイムを含み、新しいメソッドとデータセットで簡単に拡張できるように設計されている。
パフォーマンスに影響を与える重要な設定を決定するために、広範な実験、トレーニング、および2200以上のモデルの評価を行います。
その結果, LLM法は半教師付き環境で従来の手法を著しく上回り, その利点は教師付き環境ではごくわずかである,という8つの知見が得られた。
論文 参考訳(メタデータ) (2025-02-02T15:56:05Z) - $\textit{X}^2$-DFD: A framework for e${X}$plainable and e${X}$tendable Deepfake Detection [52.14468236527728]
3つのコアモジュールからなる新しいフレームワークX2$-DFDを提案する。
最初のモジュールであるモデル特徴評価(MFA)は、MLLMに固有の偽機能の検出能力を計測し、これらの機能の下位ランキングを提供する。
第2のモジュールであるStrong Feature Strengthening (SFS)は、上位機能に基づいて構築されたデータセット上でMLLMを微調整することで、検出と説明機能を強化する。
第3のモジュールであるWak Feature Supplementing (WFS)は、外部専用の機能を統合することで、低階機能における微調整MLLMの機能を改善する。
論文 参考訳(メタデータ) (2024-10-08T15:28:33Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Instruction Tuning with Retrieval-based Examples Ranking for Aspect-based Sentiment Analysis [7.458853474864602]
アスペクトベースの感情分析(ABSA)は、特定の側面に関連する感情情報を識別し、企業や組織に対してより深い市場洞察を提供する。
近年の研究では、ABSAを生成タスクとして再構成する命令チューニングの固定例が提案されている。
本研究では,ABSAタスクの検索に基づくサンプルランキングを用いた指導学習手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T10:39:10Z) - MatPlotAgent: Method and Evaluation for LLM-Based Agentic Scientific Data Visualization [86.61052121715689]
MatPlotAgentは、科学的データ可視化タスクを自動化するために設計された、モデルに依存しないフレームワークである。
MatPlotBenchは、100人の検証されたテストケースからなる高品質なベンチマークである。
論文 参考訳(メタデータ) (2024-02-18T04:28:28Z) - LLMDFA: Analyzing Dataflow in Code with Large Language Models [8.92611389987991]
本稿では,コンパイル不要でカスタマイズ可能なデータフロー解析フレームワークLLMDFAを提案する。
問題をいくつかのサブタスクに分解し、一連の新しい戦略を導入する。
LLMDFAは平均87.10%の精度と80.77%のリコールを達成し、F1スコアを最大0.35に向上させた。
論文 参考訳(メタデータ) (2024-02-16T15:21:35Z) - Instruction Tuning for Large Language Models: A Survey [52.86322823501338]
我々は、教師付き微調整(SFT)の一般的な方法論を含む、文献の体系的なレビューを行う。
また、既存の戦略の欠陥を指摘しながら、SFTの潜在的な落とし穴についても、それに対する批判とともに検討する。
論文 参考訳(メタデータ) (2023-08-21T15:35:16Z) - A Locally Adaptive Algorithm for Multiple Testing with Network Structure [4.441085538537119]
本稿では,広い範囲の補助情報を推論プロセスに統合するフレキシブルなフレームワークを提案する。
LASLAは、ネットワーク構造データによって引き起こされる課題によって、特に動機付けられている。
また、空間的位置や複数の補助的なシーケンスなど、他の種類の側情報に対して非常に効果的であることを示す。
論文 参考訳(メタデータ) (2022-03-22T04:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。