Real-time Cross-modal Cybersickness Prediction in Virtual Reality
- URL: http://arxiv.org/abs/2501.01212v1
- Date: Thu, 02 Jan 2025 11:41:43 GMT
- Title: Real-time Cross-modal Cybersickness Prediction in Virtual Reality
- Authors: Yitong Zhu, Tangyao Li, Yuyang Wang,
- Abstract summary: Cybersickness remains a significant barrier to the widespread adoption of immersive virtual reality (VR) experiences.
We propose a lightweight model that processes bio-signal features and a PP-TSN network for video feature extraction.
Our model, trained with a lightweight framework, was validated on a public dataset containing eye and head tracking data, physiological data, and VR video, and demonstrated state-of-the-art performance in cybersickness prediction.
- Score: 2.865152517440773
- License:
- Abstract: Cybersickness remains a significant barrier to the widespread adoption of immersive virtual reality (VR) experiences, as it can greatly disrupt user engagement and comfort. Research has shown that cybersickness can significantly be reflected in head and eye tracking data, along with other physiological data (e.g., TMP, EDA, and BMP). Despite the application of deep learning techniques such as CNNs and LSTMs, these models often struggle to capture the complex interactions between multiple data modalities and lack the capacity for real-time inference, limiting their practical application. Addressing this gap, we propose a lightweight model that leverages a transformer-based encoder with sparse self-attention to process bio-signal features and a PP-TSN network for video feature extraction. These features are then integrated via a cross-modal fusion module, creating a video-aware bio-signal representation that supports cybersickness prediction based on both visual and bio-signal inputs. Our model, trained with a lightweight framework, was validated on a public dataset containing eye and head tracking data, physiological data, and VR video, and demonstrated state-of-the-art performance in cybersickness prediction, achieving a high accuracy of 93.13\% using only VR video inputs. These findings suggest that our approach not only enables effective, real-time cybersickness prediction but also addresses the longstanding issue of modality interaction in VR environments. This advancement provides a foundation for future research on multimodal data integration in VR, potentially leading to more personalized, comfortable and widely accessible VR experiences.
Related papers
- Mazed and Confused: A Dataset of Cybersickness, Working Memory, Mental Load, Physical Load, and Attention During a Real Walking Task in VR [11.021668923244803]
Relationship between cognitive activities, physical activities, and familiar feelings of cybersickness is not well understood.
We collected head orientation, head position, eye tracking, images, physiological readings from external sensors, and self-reported cybersickness severity, physical load, and mental load in VR.
arXiv Detail & Related papers (2024-09-10T22:41:14Z) - Deep Motion Masking for Secure, Usable, and Scalable Real-Time Anonymization of Virtual Reality Motion Data [49.68609500290361]
Recent studies have demonstrated that the motion tracking "telemetry" data used by nearly all VR applications is as uniquely identifiable as a fingerprint scan.
We present in this paper a state-of-the-art VR identification model that can convincingly bypass known defensive countermeasures.
arXiv Detail & Related papers (2023-11-09T01:34:22Z) - LiteVR: Interpretable and Lightweight Cybersickness Detection using
Explainable AI [1.1470070927586016]
Cybersickness is a common ailment associated with virtual reality (VR) user experiences.
We present an explainable artificial intelligence (XAI)-based framework, LiteVR, for cybersickness detection.
arXiv Detail & Related papers (2023-02-05T21:51:12Z) - VR-LENS: Super Learning-based Cybersickness Detection and Explainable
AI-Guided Deployment in Virtual Reality [1.9642496463491053]
This work presents an explainable artificial intelligence (XAI)-based framework VR-LENS for developing cybersickness detection ML models.
We first develop a novel super learning-based ensemble ML model for cybersickness detection.
Our proposed method identified eye tracking, player position, and galvanic skin/heart rate response as the most dominant features for the integrated sensor, gameplay, and bio-physiological datasets.
arXiv Detail & Related papers (2023-02-03T20:15:51Z) - Force-Aware Interface via Electromyography for Natural VR/AR Interaction [69.1332992637271]
We design a learning-based neural interface for natural and intuitive force inputs in VR/AR.
We show that our interface can decode finger-wise forces in real-time with 3.3% mean error, and generalize to new users with little calibration.
We envision our findings to push forward research towards more realistic physicality in future VR/AR.
arXiv Detail & Related papers (2022-10-03T20:51:25Z) - TruVR: Trustworthy Cybersickness Detection using Explainable Machine
Learning [1.9642496463491053]
Cybersickness can be characterized by nausea, vertigo, headache, eye strain, and other discomforts when using virtual reality (VR) systems.
The previously reported machine learning (ML) and deep learning (DL) algorithms for detecting (classification) and predicting (regression) VR cybersickness use black-box models.
We present three explainable machine learning (xML) models to detect and predict cybersickness.
arXiv Detail & Related papers (2022-09-12T13:55:13Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
We develop for the first time a system consisting of computational models for synchronously skeletal motion, electrocardiogram, blood pressure, respiration, and skin conductance signals.
The proposed framework is modular and allows the flexibility to experiment with different models.
In addition to facilitating ML research for round-the-clock monitoring at a reduced cost, the proposed framework will allow reusability of code and data.
arXiv Detail & Related papers (2021-02-08T21:56:15Z) - Relational Graph Learning on Visual and Kinematics Embeddings for
Accurate Gesture Recognition in Robotic Surgery [84.73764603474413]
We propose a novel online approach of multi-modal graph network (i.e., MRG-Net) to dynamically integrate visual and kinematics information.
The effectiveness of our method is demonstrated with state-of-the-art results on the public JIGSAWS dataset.
arXiv Detail & Related papers (2020-11-03T11:00:10Z) - AEGIS: A real-time multimodal augmented reality computer vision based
system to assist facial expression recognition for individuals with autism
spectrum disorder [93.0013343535411]
This paper presents the development of a multimodal augmented reality (AR) system which combines the use of computer vision and deep convolutional neural networks (CNN)
The proposed system, which we call AEGIS, is an assistive technology deployable on a variety of user devices including tablets, smartphones, video conference systems, or smartglasses.
We leverage both spatial and temporal information in order to provide an accurate expression prediction, which is then converted into its corresponding visualization and drawn on top of the original video frame.
arXiv Detail & Related papers (2020-10-22T17:20:38Z) - ThreeDWorld: A Platform for Interactive Multi-Modal Physical Simulation [75.0278287071591]
ThreeDWorld (TDW) is a platform for interactive multi-modal physical simulation.
TDW enables simulation of high-fidelity sensory data and physical interactions between mobile agents and objects in rich 3D environments.
We present initial experiments enabled by TDW in emerging research directions in computer vision, machine learning, and cognitive science.
arXiv Detail & Related papers (2020-07-09T17:33:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.