論文の概要: Automated Self-Refinement and Self-Correction for LLM-based Product Attribute Value Extraction
- arxiv url: http://arxiv.org/abs/2501.01237v1
- Date: Thu, 02 Jan 2025 12:55:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:48.245770
- Title: Automated Self-Refinement and Self-Correction for LLM-based Product Attribute Value Extraction
- Title(参考訳): LLMを用いた製品属性値抽出のための自動自己補正と自己補正
- Authors: Alexander Brinkmann, Christian Bizer,
- Abstract要約: 本稿では,製品属性値抽出タスクに対して,エラーベースのプロンプト書き換えと自己補正という2つの自己補正手法を適用した。
実験の結果、どちらの自己補充技術も、異なるシナリオでモデルの性能に限界的な影響しか与えず、処理コストは大幅に増加することがわかった。
- 参考スコア(独自算出の注目度): 51.45146101802871
- License:
- Abstract: Structured product data, in the form of attribute-value pairs, is essential for e-commerce platforms to support features such as faceted product search and attribute-based product comparison. However, vendors often provide unstructured product descriptions, making attribute value extraction necessary to ensure data consistency and usability. Large language models (LLMs) have demonstrated their potential for product attribute value extraction in few-shot scenarios. Recent research has shown that self-refinement techniques can improve the performance of LLMs on tasks such as code generation and text-to-SQL translation. For other tasks, the application of these techniques has resulted in increased costs due to processing additional tokens, without achieving any improvement in performance. This paper investigates applying two self-refinement techniques, error-based prompt rewriting and self-correction, to the product attribute value extraction task. The self-refinement techniques are evaluated across zero-shot, few-shot in-context learning, and fine-tuning scenarios using GPT-4o. The experiments show that both self-refinement techniques have only a marginal impact on the model's performance across the different scenarios, while significantly increasing processing costs. For scenarios with training data, fine-tuning yields the highest performance, while the ramp-up costs of fine-tuning are balanced out as the amount of product descriptions increases.
- Abstract(参考訳): 構造化された製品データは、属性と値のペアの形で、ファセットされた製品検索や属性ベースの製品比較のような機能をサポートするために、Eコマースプラットフォームにとって不可欠である。
しかし、ベンダーはしばしば非構造化の製品記述を提供し、データの一貫性とユーザビリティを確保するために属性値の抽出を必要とします。
大規模言語モデル(LLM)は、数ショットのシナリオで製品属性値の抽出の可能性を示した。
近年の研究では、コード生成やテキスト・トゥ・SQL翻訳といったタスクにおけるLCMの性能向上が実証されている。
他のタスクでは、これらのテクニックの適用は、パフォーマンスの改善を達成せずに、追加トークンの処理によるコストの増大をもたらしている。
本稿では,製品属性値抽出タスクに対して,エラーベースのプロンプト書き換えと自己補正という2つの自己補正手法を適用した。
GPT-4oを用いて、ゼロショット、少数ショットのインコンテキスト学習、微調整シナリオにまたがって自己補充技術を評価する。
実験の結果、どちらの自己補充技術も異なるシナリオでモデルの性能に限界的な影響しか与えず、処理コストは大幅に増大していることがわかった。
トレーニングデータを持つシナリオでは、ファインチューニングが最もパフォーマンスが高いのに対して、ファインチューニングの上昇コストは製品説明の量が増加するにつれてバランスが取れます。
関連論文リスト
- Exploring Large Language Models for Product Attribute Value Identification [25.890927969633196]
製品属性値識別(PAVI)は、製品情報から属性とその値を自動的に識別する。
既存の手法は、BARTやT5のような微調整済みの言語モデルに依存している。
本稿では, LLaMA や Mistral などの大規模言語モデル (LLM) をデータ効率・ロバストなPAVI 代替品として検討する。
論文 参考訳(メタデータ) (2024-09-19T12:09:33Z) - EIVEN: Efficient Implicit Attribute Value Extraction using Multimodal LLM [52.016009472409166]
EIVENは暗黙的な属性値抽出のためのデータおよびパラメータ効率の良い生成フレームワークである。
本稿では,モデル混同を減らすための新しい学習・比較手法を提案する。
実験の結果,EIVENは暗黙的属性値の抽出において既存の手法よりも有意に優れていることがわかった。
論文 参考訳(メタデータ) (2024-04-13T03:15:56Z) - Enhanced E-Commerce Attribute Extraction: Innovating with Decorative
Relation Correction and LLAMA 2.0-Based Annotation [4.81846973621209]
本稿では,分類のためのBERT,属性値抽出のための条件付きランダムフィールド(CRF)層,データアノテーションのための大規模言語モデル(LLM)を統合した先駆的フレームワークを提案する。
提案手法は, CRFのシーケンス復号技術と相乗化したBERTの頑健な表現学習を利用して, 属性値の同定と抽出を行う。
私たちの方法論は、Walmart、BestBuyのEコマースNERデータセット、CoNLLデータセットなど、さまざまなデータセットで厳格に検証されています。
論文 参考訳(メタデータ) (2023-12-09T08:26:30Z) - JPAVE: A Generation and Classification-based Model for Joint Product
Attribute Prediction and Value Extraction [59.94977231327573]
JPAVEと呼ばれる値生成/分類と属性予測を備えたマルチタスク学習モデルを提案する。
我々のモデルの2つの変種は、オープンワールドとクローズドワールドのシナリオのために設計されている。
公開データセットにおける実験結果は,強いベースラインと比較して,我々のモデルが優れていることを示す。
論文 参考訳(メタデータ) (2023-11-07T18:36:16Z) - ExtractGPT: Exploring the Potential of Large Language Models for Product Attribute Value Extraction [52.14681890859275]
電子商取引プラットフォームは、属性と値のペアという形で構造化された製品データを必要とする。
BERTベースの抽出法では,タスク固有の大量のトレーニングデータを必要とする。
本稿では,大規模言語モデル (LLM) を,より訓練的かつ堅牢な代替手段として活用することを検討する。
論文 参考訳(メタデータ) (2023-10-19T07:39:00Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
本稿では,Large Language Models (LLMs) の自己誘導手法を導入し,オープンソースデータセットからサクラサンプルを自動識別し,選択する。
我々の重要な革新である命令追従困難度(IFD)メトリックは、モデルが期待する応答と本質的な生成能力の相違を識別するための重要な指標として現れます。
論文 参考訳(メタデータ) (2023-08-23T09:45:29Z) - A Unified Generative Approach to Product Attribute-Value Identification [6.752749933406399]
本稿では,製品属性値識別(PAVI)タスクに対する生成的アプローチについて検討する。
我々は、予め訓練された生成モデルT5を微調整し、与えられた製品テキストから属性値対のセットをターゲットシーケンスとしてデコードする。
提案手法が既存の抽出法や分類法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2023-06-09T00:33:30Z) - Automatic Validation of Textual Attribute Values in E-commerce Catalog
by Learning with Limited Labeled Data [61.789797281676606]
そこで我々はMetaBridgeと呼ばれる新しいメタ学習潜伏変数アプローチを提案する。
限られたラベル付きデータを持つカテゴリのサブセットから、転送可能な知識を学ぶことができる。
ラベルのないデータで、目に見えないカテゴリの不確実性を捉えることができる。
論文 参考訳(メタデータ) (2020-06-15T21:31:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。