EHCTNet: Enhanced Hybrid of CNN and Transformer Network for Remote Sensing Image Change Detection
- URL: http://arxiv.org/abs/2501.01238v1
- Date: Thu, 02 Jan 2025 12:55:36 GMT
- Title: EHCTNet: Enhanced Hybrid of CNN and Transformer Network for Remote Sensing Image Change Detection
- Authors: Junjie Yang, Haibo Wan, Zhihai Shang,
- Abstract summary: Existing frameworks, struggling to improve the Precision metric to reduce the cost of false positive, still have limitations in focusing on the change of interest.
This work tackles these issues by enhancing feature learning capabilities and integrating the frequency components of feature information.
We propose an enhanced hybrid of CNN and Transformer network (EHCTNet) for effectively mining the change information of interest.
- Score: 14.31739715354338
- License:
- Abstract: Remote sensing (RS) change detection incurs a high cost because of false negatives, which are more costly than false positives. Existing frameworks, struggling to improve the Precision metric to reduce the cost of false positive, still have limitations in focusing on the change of interest, which leads to missed detections and discontinuity issues. This work tackles these issues by enhancing feature learning capabilities and integrating the frequency components of feature information, with a strategy to incrementally boost the Recall value. We propose an enhanced hybrid of CNN and Transformer network (EHCTNet) for effectively mining the change information of interest. Firstly, a dual branch feature extraction module is used to extract the multi scale features of RS images. Secondly, the frequency component of these features is exploited by a refined module I. Thirdly, an enhanced token mining module based on the Kolmogorov Arnold Network is utilized to derive semantic information. Finally, the semantic change information's frequency component, beneficial for final detection, is mined from the refined module II. Extensive experiments validate the effectiveness of EHCTNet in comprehending complex changes of interest. The visualization outcomes show that EHCTNet detects more intact and continuous changed areas and perceives more accurate neighboring distinction than state of the art models.
Related papers
- FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.
We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.
To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)
We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNet introduces an early fusion backbone to exploit both spatial and temporal features.
Experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods.
arXiv Detail & Related papers (2024-07-03T14:58:40Z) - DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning [5.932234366793244]
Change sensing (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images.
Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest.
We propose DNet, a RSCD network based on dual-domain learning (i.e. frequency and spatial domains)
arXiv Detail & Related papers (2024-06-19T14:54:09Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Explicit Change Relation Learning for Change Detection in VHR Remote
Sensing Images [12.228675703851733]
We propose a network architecture NAME for the explicit mining of change relation features.
The change features of change detection should be divided into pre-changed image features, post-changed image features and change relation features.
Our network performs better, in terms of F1, IoU, and OA, than those of the existing advanced networks for change detection.
arXiv Detail & Related papers (2023-11-14T08:47:38Z) - SwinV2DNet: Pyramid and Self-Supervision Compounded Feature Learning for
Remote Sensing Images Change Detection [12.727650696327878]
We propose an end-to-end compounded dense network SwinV2DNet to inherit advantages of transformer and CNN.
It captures the change relationship features through the densely connected Swin V2 backbone.
It provides the low-level pre-changed and post-changed features through a CNN branch.
arXiv Detail & Related papers (2023-08-22T03:31:52Z) - Lightweight Structure-aware Transformer Network for VHR Remote Sensing
Image Change Detection [15.391216316828354]
This Letter proposes a Lightweight Structure-aware Transformer (LSAT) network for RS image CD.
First, a Cross-dimension Interactive Self-attention (CISA) module with linear complexity is designed to replace the vanilla self-attention in visual Transformer.
Second, a Structure-aware Enhancement Module (SAEM) is designed to enhance difference features and edge detail information.
arXiv Detail & Related papers (2023-06-03T03:21:18Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
Transformer-based methods have shown impressive performance in single image super-resolution (SISR) tasks.
Transformers that need to incorporate contextual information to extract features dynamically are neglected.
We propose a lightweight Cross-receptive Focused Inference Network (CFIN) that consists of a cascade of CT Blocks mixed with CNN and Transformer.
arXiv Detail & Related papers (2022-07-06T16:32:29Z) - Efficient Decoder-free Object Detection with Transformers [75.00499377197475]
Vision transformers (ViTs) are changing the landscape of object detection approaches.
We propose a decoder-free fully transformer-based (DFFT) object detector.
DFFT_SMALL achieves high efficiency in both training and inference stages.
arXiv Detail & Related papers (2022-06-14T13:22:19Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.