DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning
- URL: http://arxiv.org/abs/2406.13606v1
- Date: Wed, 19 Jun 2024 14:54:09 GMT
- Title: DDLNet: Boosting Remote Sensing Change Detection with Dual-Domain Learning
- Authors: Xiaowen Ma, Jiawei Yang, Rui Che, Huanting Zhang, Wei Zhang,
- Abstract summary: Change sensing (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images.
Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest.
We propose DNet, a RSCD network based on dual-domain learning (i.e. frequency and spatial domains)
- Score: 5.932234366793244
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Remote sensing change detection (RSCD) aims to identify the changes of interest in a region by analyzing multi-temporal remote sensing images, and has an outstanding value for local development monitoring. Existing RSCD methods are devoted to contextual modeling in the spatial domain to enhance the changes of interest. Despite the satisfactory performance achieved, the lack of knowledge in the frequency domain limits the further improvement of model performance. In this paper, we propose DDLNet, a RSCD network based on dual-domain learning (i.e., frequency and spatial domains). In particular, we design a Frequency-domain Enhancement Module (FEM) to capture frequency components from the input bi-temporal images using Discrete Cosine Transform (DCT) and thus enhance the changes of interest. Besides, we devise a Spatial-domain Recovery Module (SRM) to fuse spatiotemporal features for reconstructing spatial details of change representations. Extensive experiments on three benchmark RSCD datasets demonstrate that the proposed method achieves state-of-the-art performance and reaches a more satisfactory accuracy-efficiency trade-off. Our code is publicly available at https://github.com/xwmaxwma/rschange.
Related papers
- Bi-temporal Gaussian Feature Dependency Guided Change Detection in Remote Sensing Images [17.674955288033974]
Change Detection (CD) methods still struggle to address pseudo changes resulting from domain information differences in multi-temporal images.
We propose a bi-temporal Gaussian distribution feature-dependent network (BGFD) to address this problem.
BGFD has effectively reduced pseudo changes and enhanced the detection capability of detail information.
arXiv Detail & Related papers (2024-10-12T14:01:41Z) - EfficientCD: A New Strategy For Change Detection Based With Bi-temporal Layers Exchanged [3.3885253104046993]
We propose a novel deep learning framework named EfficientCD for remote sensing image change detection.
The framework employs EfficientNet as its backbone network for feature extraction.
The EfficientCD has been experimentally validated on four remote sensing datasets.
arXiv Detail & Related papers (2024-07-22T19:11:50Z) - Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - ChangeBind: A Hybrid Change Encoder for Remote Sensing Change Detection [16.62779899494721]
Change detection (CD) is a fundamental task in remote sensing (RS) which aims to detect the semantic changes between the same geographical regions at different time stamps.
We propose an effective Siamese-based framework to encode the semantic changes occurring in the bi-temporal RS images.
arXiv Detail & Related papers (2024-04-26T17:47:14Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - DI-V2X: Learning Domain-Invariant Representation for
Vehicle-Infrastructure Collaborative 3D Object Detection [78.09431523221458]
DI-V2X aims to learn Domain-Invariant representations through a new distillation framework.
DI-V2X comprises three essential components: a domain-mixing instance augmentation (DMA) module, a progressive domain-invariant distillation (PDD) module, and a domain-adaptive fusion (DAF) module.
arXiv Detail & Related papers (2023-12-25T14:40:46Z) - TransY-Net:Learning Fully Transformer Networks for Change Detection of
Remote Sensing Images [64.63004710817239]
We propose a novel Transformer-based learning framework named TransY-Net for remote sensing image CD.
It improves the feature extraction from a global view and combines multi-level visual features in a pyramid manner.
Our proposed method achieves a new state-of-the-art performance on four optical and two SAR image CD benchmarks.
arXiv Detail & Related papers (2023-10-22T07:42:19Z) - STNet: Spatial and Temporal feature fusion network for change detection
in remote sensing images [5.258365841490956]
We propose STNet, a remote sensing change detection network based on spatial and temporal feature fusions.
Experimental results on three benchmark datasets for RSCD demonstrate that the proposed method achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-04-22T14:40:41Z) - Deep Metric Learning for Unsupervised Remote Sensing Change Detection [60.89777029184023]
Remote Sensing Change Detection (RS-CD) aims to detect relevant changes from Multi-Temporal Remote Sensing Images (MT-RSIs)
The performance of existing RS-CD methods is attributed to training on large annotated datasets.
This paper proposes an unsupervised CD method based on deep metric learning that can deal with both of these issues.
arXiv Detail & Related papers (2023-03-16T17:52:45Z) - Adaptive Frequency Learning in Two-branch Face Forgery Detection [66.91715092251258]
We propose Adaptively learn Frequency information in the two-branch Detection framework, dubbed AFD.
We liberate our network from the fixed frequency transforms, and achieve better performance with our data- and task-dependent transform layers.
arXiv Detail & Related papers (2022-03-27T14:25:52Z) - Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain
Network [33.50775914682585]
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task.
Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain.
We propose a Dual-Domain Network to tackle the above two challenges.
arXiv Detail & Related papers (2021-04-14T08:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.