論文の概要: Large Language Model-Enhanced Symbolic Reasoning for Knowledge Base Completion
- arxiv url: http://arxiv.org/abs/2501.01246v1
- Date: Thu, 02 Jan 2025 13:14:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:14:47.676728
- Title: Large Language Model-Enhanced Symbolic Reasoning for Knowledge Base Completion
- Title(参考訳): 大言語モデルによる知識ベース補完のためのシンボリック推論
- Authors: Qiyuan He, Jianfei Yu, Wenya Wang,
- Abstract要約: 大きな言語モデル(LLM)とルールベースの推論は、知識ベース補完の柔軟性と信頼性を向上させる強力なソリューションを提供する。
本稿では, サブグラフエクストラクタ, LLMプロポーラ, ルール共振器からなる新しいフレームワークを提案する。
提案したルールの豊かさと多様性を高めるためのLCMの利用,信頼性を向上させるためのルールベースの推論との統合などである。
- 参考スコア(独自算出の注目度): 28.724919973497943
- License:
- Abstract: Integrating large language models (LLMs) with rule-based reasoning offers a powerful solution for improving the flexibility and reliability of Knowledge Base Completion (KBC). Traditional rule-based KBC methods offer verifiable reasoning yet lack flexibility, while LLMs provide strong semantic understanding yet suffer from hallucinations. With the aim of combining LLMs' understanding capability with the logical and rigor of rule-based approaches, we propose a novel framework consisting of a Subgraph Extractor, an LLM Proposer, and a Rule Reasoner. The Subgraph Extractor first samples subgraphs from the KB. Then, the LLM uses these subgraphs to propose diverse and meaningful rules that are helpful for inferring missing facts. To effectively avoid hallucination in LLMs' generations, these proposed rules are further refined by a Rule Reasoner to pinpoint the most significant rules in the KB for Knowledge Base Completion. Our approach offers several key benefits: the utilization of LLMs to enhance the richness and diversity of the proposed rules and the integration with rule-based reasoning to improve reliability. Our method also demonstrates strong performance across diverse KB datasets, highlighting the robustness and generalizability of the proposed framework.
- Abstract(参考訳): 大きな言語モデル(LLM)とルールベースの推論を統合することで、KBC(Knowledge Base Completion)の柔軟性と信頼性を向上させる強力なソリューションを提供する。
従来のルールベースのKBCメソッドは、検証可能な推論を提供するが、柔軟性がない一方、LLMは強力な意味理解を提供するが、幻覚に苦しむ。
ルールベースアプローチの論理的・厳密性とLLMの理解能力を組み合わせることを目的として, サブグラフエクストラクタ, LLMプロポーラ, ルール共振器からなる新しいフレームワークを提案する。
サブグラフエクストラクタはKBから最初のサブグラフをサンプリングする。
そして、LSMはこれらの部分グラフを使用して、欠落した事実を推測するのに役立つ多様で意味のあるルールを提案する。
LLMの世代における幻覚を効果的に回避するために、これらのルールは、KB for Knowledge Base Completionにおいて最も重要なルールをピンポイントするルール推論器によってさらに洗練される。
提案するルールの豊かさと多様性を高めるためのLCMの利用,信頼性向上のためのルールベースの推論との統合など,当社のアプローチは,いくつかの重要なメリットを提供する。
また,提案手法は多種多様なKBデータセットに対して高い性能を示し,提案手法の堅牢性と一般化性を強調した。
関連論文リスト
- LLM-Lasso: A Robust Framework for Domain-Informed Feature Selection and Regularization [59.75242204923353]
LLM-Lassoは大規模言語モデル(LLM)を利用してラッソ回帰における特徴選択を導くフレームワークである。
LLMは各特徴に対してペナルティ因子を生成し、単純でチューニング可能なモデルを用いてラスソペナルティの重みに変換される。
LLMによりより関連づけられた特徴は、より低い罰を受け、最終モデルに保持される可能性を高める。
論文 参考訳(メタデータ) (2025-02-15T02:55:22Z) - Drawing the Line: Enhancing Trustworthiness of MLLMs Through the Power of Refusal [21.342265570934995]
既存の手法はMLLMの信頼性を高める手段としての拒絶応答の重要性をほとんど見落としてきた。
InBoL(Information Boundary-Aware Learning Framework)は,MLLMが不十分な情報に遭遇する際のユーザクエリの応答を拒否する,新たなアプローチである。
このフレームワークでは、包括的なデータ生成パイプラインと、適切な拒絶応答を提供するモデルの能力を改善するためのトレーニング戦略が導入された。
論文 参考訳(メタデータ) (2024-12-15T14:17:14Z) - TRACE: TRansformer-based Attribution using Contrastive Embeddings in LLMs [50.259001311894295]
TRACE と呼ばれるコントラスト埋め込みを用いた新しいTRansformer-based Attribution フレームワークを提案する。
TRACEは情報源の属性を精度良く改善し,大規模言語モデルの信頼性と信頼性を高める貴重なツールであることを示す。
論文 参考訳(メタデータ) (2024-07-06T07:19:30Z) - Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation [23.182787000804407]
セッションベースレコメンデーション(SBR)を強化するための有望なアプローチとして,大規模言語モデル(LLM)が登場している。
本稿では,SBRのための反射強化大言語モデル(Re2LLM)を提案する。
論文 参考訳(メタデータ) (2024-03-25T05:12:18Z) - Integrating Large Language Models with Graphical Session-Based
Recommendation [8.086277931395212]
LLMGRというグラフィカルなセッションベースレコメンデーションを備えた大規模言語モデルを導入する。
このフレームワークは、SBRタスクのためのLLMとグラフニューラルネットワーク(GNN)を調和して統合することでギャップを埋める。
この統合は、自然言語理解におけるLLMとリレーショナルデータ処理におけるGNNの相補的な強みを活用することを目指している。
論文 参考訳(メタデータ) (2024-02-26T12:55:51Z) - Can LLMs Reason with Rules? Logic Scaffolding for Stress-Testing and Improving LLMs [87.34281749422756]
大規模言語モデル(LLM)は、様々な推論タスクにおいて、印象的な人間的なパフォーマンスを実現している。
しかし、その根底にある推論規則の熟達性は、人間の能力に欠ける。
本稿では,推論ルールベースであるULogicを構築するための,推論ルール生成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-18T03:38:51Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
本稿では,知識グラフに基づくリトロフィッティング(KGR)を提案する。
実験により,実QAベンチマークにおいて,KGRはLLMの性能を大幅に向上できることが示された。
論文 参考訳(メタデータ) (2023-11-22T11:08:38Z) - A Principled Framework for Knowledge-enhanced Large Language Model [58.1536118111993]
大規模言語モデル(LLM)は汎用性があるが、深い信頼性のある推論を必要とするタスクに悩まされることが多い。
本稿では、知識を効果的に固定し、閉ループ推論プロセスを用いるLLMを作成するための厳密な設計のフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-18T18:10:02Z) - ChatRule: Mining Logical Rules with Large Language Models for Knowledge
Graph Reasoning [107.61997887260056]
そこで我々は,知識グラフ上の論理ルールをマイニングするための大規模言語モデルの力を解き放つ新しいフレームワークChatRuleを提案する。
具体的には、このフレームワークは、KGのセマンティック情報と構造情報の両方を活用するLLMベースのルールジェネレータで開始される。
生成されたルールを洗練させるために、ルールランキングモジュールは、既存のKGから事実を取り入れてルール品質を推定する。
論文 参考訳(メタデータ) (2023-09-04T11:38:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。