Language Models for Code Optimization: Survey, Challenges and Future Directions
- URL: http://arxiv.org/abs/2501.01277v2
- Date: Fri, 03 Jan 2025 14:55:21 GMT
- Title: Language Models for Code Optimization: Survey, Challenges and Future Directions
- Authors: Jingzhi Gong, Vardan Voskanyan, Paul Brookes, Fan Wu, Wei Jie, Jie Xu, Rafail Giavrimis, Mike Basios, Leslie Kanthan, Zheng Wang,
- Abstract summary: Language models (LMs) built upon deep neural networks (DNNs) have recently demonstrated breakthrough effectiveness in software engineering tasks.
This study aims to provide actionable insights and references for both researchers and practitioners in this rapidly evolving field.
- Score: 7.928856221466083
- License:
- Abstract: Language models (LMs) built upon deep neural networks (DNNs) have recently demonstrated breakthrough effectiveness in software engineering tasks such as code generation, completion, and repair. This has paved the way for the emergence of LM-based code optimization techniques, which are crucial for enhancing the performance of existing programs, such as accelerating program execution time. However, a comprehensive survey dedicated to this specific application has been lacking. To fill this gap, we present a systematic literature review of over 50 primary studies, identifying emerging trends and addressing 11 specialized questions. Our findings reveal five critical open challenges, such as balancing model complexity with practical usability, cross-language/performance generalizability, and building trust in AI-driven solutions. Furthermore, we provide eight future research directions to facilitate more efficient, robust, and reliable LM-based code optimization. Thereby, this study aims to provide actionable insights and foundational references for both researchers and practitioners in this rapidly evolving field.
Related papers
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
We introduce Meta MLGym and MLGym-Bench, a new framework and benchmark for evaluating and developing large language models on AI research tasks.
This is the first Gym environment for machine learning (ML) tasks, enabling research on reinforcement learning (RL) algorithms for training such agents.
We evaluate a number of frontier large language models (LLMs) on our benchmarks such as Claude-3.5-Sonnet, Llama-3.1 405B, GPT-4o, o1-preview, and Gemini-1.5 Pro.
arXiv Detail & Related papers (2025-02-20T12:28:23Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Towards Coarse-to-Fine Evaluation of Inference Efficiency for Large Language Models [95.96734086126469]
Large language models (LLMs) can serve as the assistant to help users accomplish their jobs, and also support the development of advanced applications.
For the wide application of LLMs, the inference efficiency is an essential concern, which has been widely studied in existing work.
We perform a detailed coarse-to-fine analysis of the inference performance of various code libraries.
arXiv Detail & Related papers (2024-04-17T15:57:50Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
We explore the performance of large language models (LLMs) across the entire software development lifecycle with DevEval.
DevEval features four programming languages, multiple domains, high-quality data collection, and carefully designed and verified metrics for each task.
Empirical studies show that current LLMs, including GPT-4, fail to solve the challenges presented within DevEval.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
generative large language models (LLMs) stand at the forefront, revolutionizing how we interact with our data.
However, the computational intensity and memory consumption of deploying these models present substantial challenges in terms of serving efficiency.
This survey addresses the imperative need for efficient LLM serving methodologies from a machine learning system (MLSys) research perspective.
arXiv Detail & Related papers (2023-12-23T11:57:53Z) - LLM4TDD: Best Practices for Test Driven Development Using Large Language
Models [0.76146285961466]
This paper explores the concept of LLM4TDD, where we guide Large Language Models to generate code iteratively using a test-driven development methodology.
We conduct an empirical evaluation using ChatGPT and coding problems from LeetCode to investigate the impact of different test, prompt and problem attributes on the efficacy of LLM4TDD.
arXiv Detail & Related papers (2023-12-07T20:37:54Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - On the Reliability and Explainability of Language Models for Program
Generation [15.569926313298337]
We study the capabilities and limitations of automated program generation approaches.
We employ advanced explainable AI approaches to highlight the tokens that significantly contribute to the code transformation.
Our analysis reveals that, in various experimental scenarios, language models can recognize code grammar and structural information, but they exhibit limited robustness to changes in input sequences.
arXiv Detail & Related papers (2023-02-19T14:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.