Learning Performance-Improving Code Edits
- URL: http://arxiv.org/abs/2302.07867v5
- Date: Fri, 26 Apr 2024 16:41:55 GMT
- Title: Learning Performance-Improving Code Edits
- Authors: Alexander Shypula, Aman Madaan, Yimeng Zeng, Uri Alon, Jacob Gardner, Milad Hashemi, Graham Neubig, Parthasarathy Ranganathan, Osbert Bastani, Amir Yazdanbakhsh,
- Abstract summary: We introduce a framework for adapting large language models (LLMs) to high-level program optimization.
First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs.
For prompting, we propose retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play.
- Score: 107.21538852090208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the decline of Moore's law, optimizing program performance has become a major focus of software research. However, high-level optimizations such as API and algorithm changes remain elusive due to the difficulty of understanding the semantics of code. Simultaneously, pretrained large language models (LLMs) have demonstrated strong capabilities at solving a wide range of programming tasks. To that end, we introduce a framework for adapting LLMs to high-level program optimization. First, we curate a dataset of performance-improving edits made by human programmers of over 77,000 competitive C++ programming submission pairs, accompanied by extensive unit tests. A major challenge is the significant variability of measuring performance on commodity hardware, which can lead to spurious "improvements." To isolate and reliably evaluate the impact of program optimizations, we design an environment based on the gem5 full system simulator, the de facto simulator used in academia and industry. Next, we propose a broad range of adaptation strategies for code optimization; for prompting, these include retrieval-based few-shot prompting and chain-of-thought, and for finetuning, these include performance-conditioned generation and synthetic data augmentation based on self-play. A combination of these techniques achieves a mean speedup of 6.86 with eight generations, higher than average optimizations from individual programmers (3.66). Using our model's fastest generations, we set a new upper limit on the fastest speedup possible for our dataset at 9.64 compared to using the fastest human submissions available (9.56).
Related papers
- LLM Program Optimization via Retrieval Augmented Search [71.40092732256252]
We propose a blackbox adaptation method called Retrieval Augmented Search (RAS) that performs beam search over candidate optimizations.
We show that RAS performs 1.8$times$ better than prior state-of-the-art blackbox adaptation strategies.
We also propose a method called AEGIS for improving interpretability by decomposing training examples into "atomic edits"
arXiv Detail & Related papers (2025-01-31T06:34:47Z) - PerfCodeGen: Improving Performance of LLM Generated Code with Execution Feedback [78.89596149768458]
Large Language Models (LLMs) are widely adopted for assisting in software development tasks.
We propose PerfCodeGen, a training-free framework that enhances the performance of LLM-generated code.
arXiv Detail & Related papers (2024-11-18T06:22:38Z) - Should AI Optimize Your Code? A Comparative Study of Current Large Language Models Versus Classical Optimizing Compilers [0.0]
Large Language Models (LLMs) raise intriguing questions about the potential for AI-driven approaches to revolutionize code optimization methodologies.
This paper presents a comparative analysis between two state-of-the-art Large Language Models, GPT-4.0 and CodeLlama-70B, and traditional optimizing compilers.
arXiv Detail & Related papers (2024-06-17T23:26:41Z) - A Problem-Oriented Perspective and Anchor Verification for Code Optimization [43.28045750932116]
Large language models (LLMs) have shown remarkable capabilities in solving various programming tasks.
This paper investigates the capabilities of LLMs in optimizing code for minimal execution time.
arXiv Detail & Related papers (2024-06-17T16:10:10Z) - LLM as a Complementary Optimizer to Gradient Descent: A Case Study in Prompt Tuning [69.95292905263393]
We show that gradient-based and high-level LLMs can effectively collaborate a combined optimization framework.
In this paper, we show that these complementary to each other and can effectively collaborate a combined optimization framework.
arXiv Detail & Related papers (2024-05-30T06:24:14Z) - Leveraging Reinforcement Learning and Large Language Models for Code
Optimization [14.602997316032706]
This paper introduces a new framework to decrease the complexity of code optimization.
The proposed framework builds on large language models (LLMs) and reinforcement learning (RL)
We run several experiments on the PIE dataset using a CodeT5 language model and RRHF, a new reinforcement learning algorithm.
arXiv Detail & Related papers (2023-12-09T19:50:23Z) - Dissecting the Runtime Performance of the Training, Fine-tuning, and
Inference of Large Language Models [26.2566707495948]
Large Language Models (LLMs) have seen great advance in both academia and industry.
We benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes.
Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs.
arXiv Detail & Related papers (2023-11-07T03:25:56Z) - Large Language Models as Optimizers [106.52386531624532]
We propose Optimization by PROmpting (OPRO), a simple and effective approach to leverage large language models (LLMs) as prompts.
In each optimization step, the LLM generates new solutions from the prompt that contains previously generated solutions with their values.
We demonstrate that the best prompts optimized by OPRO outperform human-designed prompts by up to 8% on GSM8K, and by up to 50% on Big-Bench Hard tasks.
arXiv Detail & Related papers (2023-09-07T00:07:15Z) - Learning to Superoptimize Real-world Programs [79.4140991035247]
We propose a framework to learn to superoptimize real-world programs by using neural sequence-to-sequence models.
We introduce the Big Assembly benchmark, a dataset consisting of over 25K real-world functions mined from open-source projects in x86-64 assembly.
arXiv Detail & Related papers (2021-09-28T05:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.