論文の概要: CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries
- arxiv url: http://arxiv.org/abs/2501.01282v1
- Date: Thu, 02 Jan 2025 14:42:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:17:46.593134
- Title: CultureVLM: Characterizing and Improving Cultural Understanding of Vision-Language Models for over 100 Countries
- Title(参考訳): CultureVLM:100か国以上における視覚言語モデルの文化的理解の特化と改善
- Authors: Shudong Liu, Yiqiao Jin, Cheng Li, Derek F. Wong, Qingsong Wen, Lichao Sun, Haipeng Chen, Xing Xie, Jindong Wang,
- Abstract要約: 視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮している。
CultureVerseは大規模なマルチモーダルベンチマークで、682の文化的概念、188の国/地域、15の文化的概念、3の質問タイプをカバーしている。
本稿では,文化理解の大幅な向上を実現するために,我々のデータセットを微調整したVLMのシリーズであるCultureVLMを提案する。
- 参考スコア(独自算出の注目度): 63.00147630084146
- License:
- Abstract: Vision-language models (VLMs) have advanced human-AI interaction but struggle with cultural understanding, often misinterpreting symbols, gestures, and artifacts due to biases in predominantly Western-centric training data. In this paper, we construct CultureVerse, a large-scale multimodal benchmark covering 19, 682 cultural concepts, 188 countries/regions, 15 cultural concepts, and 3 question types, with the aim of characterizing and improving VLMs' multicultural understanding capabilities. Then, we propose CultureVLM, a series of VLMs fine-tuned on our dataset to achieve significant performance improvement in cultural understanding. Our evaluation of 16 models reveals significant disparities, with a stronger performance in Western concepts and weaker results in African and Asian contexts. Fine-tuning on our CultureVerse enhances cultural perception, demonstrating cross-cultural, cross-continent, and cross-dataset generalization without sacrificing performance on models' general VLM benchmarks. We further present insights on cultural generalization and forgetting. We hope that this work could lay the foundation for more equitable and culturally aware multimodal AI systems.
- Abstract(参考訳): 視覚言語モデル(VLM)は高度な人間とAIの相互作用を持つが、文化的な理解に苦慮し、主に西洋中心のトレーニングデータに偏っているため、しばしば記号、ジェスチャー、アーティファクトを誤解釈する。
本稿では,VLMの多文化理解能力を特徴付けることを目的として,文化概念,188か国・地域,15の文化的概念,および3つの質問タイプをカバーする大規模マルチモーダル・ベンチマークであるCultureVerseを構築した。
次に,我々のデータセットに微調整されたVLMのシリーズであるCultureVLMを提案し,文化的理解の大幅な向上を実現する。
16モデルについて評価したところ、西洋のコンセプトでは性能が向上し、アフリカやアジアの文脈では結果が弱かったため、大きな相違がみられた。
CultureVerseの微調整は、文化的な認識を高め、モデルの一般的なVLMベンチマークのパフォーマンスを犠牲にすることなく、クロスカルチャー、クロスコンチネント、クロスデータセットの一般化を実証する。
我々はさらに、文化の一般化と忘れ方に関する洞察を提示する。
この研究が、より公平で文化的に認識されたマルチモーダルAIシステムの基盤になることを期待している。
関連論文リスト
- CROPE: Evaluating In-Context Adaptation of Vision and Language Models to Culture-Specific Concepts [45.77570690529597]
文化固有の概念の知識を探索するための視覚的質問応答ベンチマークであるCROPEを紹介する。
いくつかの最先端のオープンビジョンと言語モデルの評価は、文化固有の概念と共通の概念の相違が大きいことを示す。
文脈知識を用いた実験は、モデルがマルチモーダル情報を効果的に活用し、文化固有の概念を描写に結びつけるのに苦労していることを示している。
論文 参考訳(メタデータ) (2024-10-20T17:31:19Z) - Navigating the Cultural Kaleidoscope: A Hitchhiker's Guide to Sensitivity in Large Language Models [4.771099208181585]
LLMはますますグローバルなアプリケーションにデプロイされ、さまざまなバックグラウンドを持つユーザが尊敬され、理解されることが保証される。
文化的な害は、これらのモデルが特定の文化的規範と一致しないときに起こり、文化的な価値観の誤った表現や違反をもたらす。
潜在的な文化的不感を露呈するシナリオを通じて、異なる文化的文脈におけるモデルアウトプットを評価するために作成された文化的調和テストデータセットと、多様なアノテータからのフィードバックに基づいた微調整による文化的感受性の回復を目的とした、文化的に整合した選好データセットである。
論文 参考訳(メタデータ) (2024-10-15T18:13:10Z) - How Well Do LLMs Identify Cultural Unity in Diversity? [12.982460687543952]
本稿では,概念の文化的統一性を理解するために,デコーダのみの大規模言語モデル(LLM)を評価するためのベンチマークデータセットを提案する。
CUNITは、10か国で285の伝統的な文化的概念に基づいて構築された1,425の評価例で構成されている。
高い関連性を持つ異文化のコンセプトペアを識別するLLMの能力を評価するために,コントラストマッチングタスクを設計する。
論文 参考訳(メタデータ) (2024-08-09T14:45:22Z) - Benchmarking Vision Language Models for Cultural Understanding [31.898921287065242]
本稿では,視覚言語モデル(VLM)の評価を目的とした視覚的質問応答ベンチマークであるCulturalVQAを紹介する。
我々は,5大陸11カ国の文化を表わす質問毎の回答が1~5である2,378枚の画像検索ペアのコレクションをキュレートした。
質問は、衣服、食べ物、飲み物、儀式、伝統など、様々な文化の側面の理解を調査する。
論文 参考訳(メタデータ) (2024-07-15T17:21:41Z) - From Local Concepts to Universals: Evaluating the Multicultural Understanding of Vision-Language Models [10.121734731147376]
視覚言語モデルの性能は、西欧文化のイメージに最適以下である。
様々なベンチマークが、モデルの文化的傾向をテストするために提案されているが、それらは限られた範囲の文化をカバーしている。
我々はGlobalRGベンチマークを導入し、普遍性を越えた検索と文化的な視覚的接地という2つの課題からなる。
論文 参考訳(メタデータ) (2024-06-28T23:28:28Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
本稿では,2つのテキスト生成タスクにおける文化能力の評価に焦点をあてる。
我々は,文化,特に国籍の明示的なキューが,そのプロンプトに乱入している場合のモデル出力を評価する。
異なる国におけるアウトプットのテキスト類似性とこれらの国の文化的価値との間には弱い相関関係がある。
論文 参考訳(メタデータ) (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
本稿では,LLMを利用した文化データ収集のためのマルチエージェント通信フレームワークであるCultureParkを紹介する。
人間の信念、規範、習慣をカプセル化した高品質な異文化対話を生成する。
我々はこれらのモデルを,コンテンツモデレーション,文化的アライメント,文化教育という3つの下流課題にまたがって評価する。
論文 参考訳(メタデータ) (2024-05-24T01:49:02Z) - Understanding the Capabilities and Limitations of Large Language Models for Cultural Commonsense [98.09670425244462]
大規模言語モデル(LLM)は、かなりの常識的理解を示している。
本稿では,文化的コモンセンスタスクの文脈におけるいくつかの最先端LCMの能力と限界について検討する。
論文 参考訳(メタデータ) (2024-05-07T20:28:34Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
本稿では,多文化知識獲得のための新しいアプローチを提案する。
本手法は,文化トピックに関するウィキペディア文書からリンクページの広範囲なネットワークへ戦略的にナビゲートする。
私たちの仕事は、AIにおける文化的格差のギャップを深く理解し、橋渡しするための重要なステップです。
論文 参考訳(メタデータ) (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
本稿では,大規模言語モデル(LLM)における文化的優位性について述べる。
LLMは、ユーザーが非英語で尋ねるときに期待する文化とは無関係な、不適切な英語文化関連の回答を提供することが多い。
論文 参考訳(メタデータ) (2023-10-19T05:38:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。