Learning Spectral Methods by Transformers
- URL: http://arxiv.org/abs/2501.01312v3
- Date: Mon, 13 Jan 2025 03:53:34 GMT
- Title: Learning Spectral Methods by Transformers
- Authors: Yihan He, Yuan Cao, Hong-Yu Chen, Dennis Wu, Jianqing Fan, Han Liu,
- Abstract summary: We show that multi-layered Transformers, given a sufficiently large set of pre-training instances, are able to learn the algorithms themselves.
This learning paradigm is distinct from the in-context learning setup and is similar to the learning procedure of human brains.
- Score: 18.869174453242383
- License:
- Abstract: Transformers demonstrate significant advantages as the building block of modern LLMs. In this work, we study the capacities of Transformers in performing unsupervised learning. We show that multi-layered Transformers, given a sufficiently large set of pre-training instances, are able to learn the algorithms themselves and perform statistical estimation tasks given new instances. This learning paradigm is distinct from the in-context learning setup and is similar to the learning procedure of human brains where skills are learned through past experience. Theoretically, we prove that pre-trained Transformers can learn the spectral methods and use the classification of bi-class Gaussian mixture model as an example. Our proof is constructive using algorithmic design techniques. Our results are built upon the similarities of multi-layered Transformer architecture with the iterative recovery algorithms used in practice. Empirically, we verify the strong capacity of the multi-layered (pre-trained) Transformer on unsupervised learning through the lens of both the PCA and the Clustering tasks performed on the synthetic and real-world datasets.
Related papers
- One-Layer Transformer Provably Learns One-Nearest Neighbor In Context [48.4979348643494]
We study the capability of one-layer transformers learning the one-nearest neighbor rule.
A single softmax attention layer can successfully learn to behave like a one-nearest neighbor.
arXiv Detail & Related papers (2024-11-16T16:12:42Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - How Do Transformers Learn In-Context Beyond Simple Functions? A Case
Study on Learning with Representations [98.7450564309923]
This paper takes initial steps on understanding in-context learning (ICL) in more complex scenarios, by studying learning with representations.
We construct synthetic in-context learning problems with a compositional structure, where the label depends on the input through a possibly complex but fixed representation function.
We show theoretically the existence of transformers that approximately implement such algorithms with mild depth and size.
arXiv Detail & Related papers (2023-10-16T17:40:49Z) - Transformers as Decision Makers: Provable In-Context Reinforcement Learning via Supervised Pretraining [25.669038513039357]
This paper provides a theoretical framework that analyzes supervised pretraining for in-context reinforcement learning.
We show transformers with ReLU attention can efficiently approximate near-optimal online reinforcement learning algorithms.
arXiv Detail & Related papers (2023-10-12T17:55:02Z) - Understanding In-Context Learning in Transformers and LLMs by Learning
to Learn Discrete Functions [32.59746882017483]
We show that Transformers can learn to implement two distinct algorithms to solve a single task.
We also show that extant Large Language Models (LLMs) can compete with nearest-neighbor baselines on prediction tasks.
arXiv Detail & Related papers (2023-10-04T17:57:33Z) - Supervised Pretraining Can Learn In-Context Reinforcement Learning [96.62869749926415]
In this paper, we study the in-context learning capabilities of transformers in decision-making problems.
We introduce and study Decision-Pretrained Transformer (DPT), a supervised pretraining method where the transformer predicts an optimal action.
We find that the pretrained transformer can be used to solve a range of RL problems in-context, exhibiting both exploration online and conservatism offline.
arXiv Detail & Related papers (2023-06-26T17:58:50Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
This work first provides a comprehensive statistical theory for transformers to perform ICL.
We show that transformers can implement a broad class of standard machine learning algorithms in context.
A emphsingle transformer can adaptively select different base ICL algorithms.
arXiv Detail & Related papers (2023-06-07T17:59:31Z) - Transformers as Algorithms: Generalization and Implicit Model Selection
in In-context Learning [23.677503557659705]
In-context learning (ICL) is a type of prompting where a transformer model operates on a sequence of examples and performs inference on-the-fly.
We treat the transformer model as a learning algorithm that can be specialized via training to implement-at inference-time-another target algorithm.
We show that transformers can act as an adaptive learning algorithm and perform model selection across different hypothesis classes.
arXiv Detail & Related papers (2023-01-17T18:31:12Z) - Transformers learn in-context by gradient descent [58.24152335931036]
Training Transformers on auto-regressive objectives is closely related to gradient-based meta-learning formulations.
We show how trained Transformers become mesa-optimizers i.e. learn models by gradient descent in their forward pass.
arXiv Detail & Related papers (2022-12-15T09:21:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.