Understanding Difficult-to-learn Examples in Contrastive Learning: A Theoretical Framework for Spectral Contrastive Learning
- URL: http://arxiv.org/abs/2501.01317v1
- Date: Thu, 02 Jan 2025 16:17:44 GMT
- Title: Understanding Difficult-to-learn Examples in Contrastive Learning: A Theoretical Framework for Spectral Contrastive Learning
- Authors: Yi-Ge Zhang, Jingyi Cui, Qiran Li, Yisen Wang,
- Abstract summary: Unsupervised contrastive learning has shown significant performance improvements in recent years, often approaching or even rivaling supervised learning in various tasks.
Previous works have shown that difficult-to-learn examples, which are essential in supervised learning, contribute minimally in unsupervised settings.
In this paper, we find that the direct removal of difficult-to-learn examples, although reduces the sample size, can boost the downstream classification performance of contrastive learning.
- Score: 20.53618673620584
- License:
- Abstract: Unsupervised contrastive learning has shown significant performance improvements in recent years, often approaching or even rivaling supervised learning in various tasks. However, its learning mechanism is fundamentally different from that of supervised learning. Previous works have shown that difficult-to-learn examples (well-recognized in supervised learning as examples around the decision boundary), which are essential in supervised learning, contribute minimally in unsupervised settings. In this paper, perhaps surprisingly, we find that the direct removal of difficult-to-learn examples, although reduces the sample size, can boost the downstream classification performance of contrastive learning. To uncover the reasons behind this, we develop a theoretical framework modeling the similarity between different pairs of samples. Guided by this theoretical framework, we conduct a thorough theoretical analysis revealing that the presence of difficult-to-learn examples negatively affects the generalization of contrastive learning. Furthermore, we demonstrate that the removal of these examples, and techniques such as margin tuning and temperature scaling can enhance its generalization bounds, thereby improving performance. Empirically, we propose a simple and efficient mechanism for selecting difficult-to-learn examples and validate the effectiveness of the aforementioned methods, which substantiates the reliability of our proposed theoretical framework.
Related papers
- A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - Theoretical Foundations of Adversarially Robust Learning [7.589246500826111]
Current machine learning systems have been shown to be brittle against adversarial examples.
In this thesis, we explore what robustness properties can we hope to guarantee against adversarial examples.
arXiv Detail & Related papers (2023-06-13T12:20:55Z) - Rethinking Weak Supervision in Helping Contrastive Learning [19.5649824524209]
We explore the mechanical differences between semi-supervised and noisy-labeled information in helping contrastive learning.
Specifically, we investigate the most intuitive paradigm of jointly training supervised and unsupervised contrastive losses.
We prove that semi-supervised labels improve the downstream error bound whereas noisy labels have limited effects under such a paradigm.
arXiv Detail & Related papers (2023-06-07T05:18:27Z) - A Theoretical Study of Inductive Biases in Contrastive Learning [32.98250585760665]
We provide the first theoretical analysis of self-supervised learning that incorporates the effect of inductive biases originating from the model class.
We show that when the model has limited capacity, contrastive representations would recover certain special clustering structures that are compatible with the model architecture.
arXiv Detail & Related papers (2022-11-27T01:53:29Z) - The Power of Contrast for Feature Learning: A Theoretical Analysis [42.20116348668721]
We show that contrastive learning outperforms the standard autoencoders and generative adversarial networks.
We also illustrate the impact of labeled data in supervised contrastive learning.
arXiv Detail & Related papers (2021-10-06T03:10:28Z) - Exploring Adversarial Examples for Efficient Active Learning in Machine
Learning Classifiers [17.90617023533039]
We first add particular perturbation to original training examples using adversarial attack methods.
We then investigate the connections between active learning and these particular training examples.
Results show that the established theoretical foundation will guide better active learning strategies based on adversarial examples.
arXiv Detail & Related papers (2021-09-22T14:51:26Z) - Incremental False Negative Detection for Contrastive Learning [95.68120675114878]
We introduce a novel incremental false negative detection for self-supervised contrastive learning.
During contrastive learning, we discuss two strategies to explicitly remove the detected false negatives.
Our proposed method outperforms other self-supervised contrastive learning frameworks on multiple benchmarks within a limited compute.
arXiv Detail & Related papers (2021-06-07T15:29:14Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
Adrial examples causing evasive predictions are widely used to evaluate and improve the robustness of machine learning models.
We propose a framework of generating adversarial examples for unsupervised models and demonstrate novel applications to data augmentation.
arXiv Detail & Related papers (2021-03-02T17:47:58Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Learning explanations that are hard to vary [75.30552491694066]
We show that averaging across examples can favor memorization and patchwork' solutions that sew together different strategies.
We then propose and experimentally validate a simple alternative algorithm based on a logical AND.
arXiv Detail & Related papers (2020-09-01T10:17:48Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.