論文の概要: Object-level Visual Prompts for Compositional Image Generation
- arxiv url: http://arxiv.org/abs/2501.01424v1
- Date: Thu, 02 Jan 2025 18:59:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-05 17:15:28.377388
- Title: Object-level Visual Prompts for Compositional Image Generation
- Title(参考訳): 合成画像生成のためのオブジェクトレベルのビジュアルプロンプト
- Authors: Gaurav Parmar, Or Patashnik, Kuan-Chieh Wang, Daniil Ostashev, Srinivasa Narasimhan, Jun-Yan Zhu, Daniel Cohen-Or, Kfir Aberman,
- Abstract要約: テキストから画像への拡散モデルにおいて,オブジェクトレベルの視覚的プロンプトを構成する手法を提案する。
このタスクにおける重要な課題は、入力された視覚的プロンプトで表現されたオブジェクトのアイデンティティを保持することである。
我々は、キーと値が異なる視覚的表現から学習される新しいKV混合のクロスアテンション機構を導入する。
- 参考スコア(独自算出の注目度): 75.6085388740087
- License:
- Abstract: We introduce a method for composing object-level visual prompts within a text-to-image diffusion model. Our approach addresses the task of generating semantically coherent compositions across diverse scenes and styles, similar to the versatility and expressiveness offered by text prompts. A key challenge in this task is to preserve the identity of the objects depicted in the input visual prompts, while also generating diverse compositions across different images. To address this challenge, we introduce a new KV-mixed cross-attention mechanism, in which keys and values are learned from distinct visual representations. The keys are derived from an encoder with a small bottleneck for layout control, whereas the values come from a larger bottleneck encoder that captures fine-grained appearance details. By mixing keys and values from these complementary sources, our model preserves the identity of the visual prompts while supporting flexible variations in object arrangement, pose, and composition. During inference, we further propose object-level compositional guidance to improve the method's identity preservation and layout correctness. Results show that our technique produces diverse scene compositions that preserve the unique characteristics of each visual prompt, expanding the creative potential of text-to-image generation.
- Abstract(参考訳): テキストから画像への拡散モデルにおいて,オブジェクトレベルの視覚的プロンプトを構成する手法を提案する。
提案手法は,テキストプロンプトが提示する汎用性と表現力に類似した,多様なシーンやスタイルにまたがる意味的コヒーレントな構成を生成するタスクに対処する。
このタスクにおける重要な課題は、入力された視覚的プロンプトで表現されたオブジェクトのアイデンティティを保持すると同時に、異なる画像にまたがる多様な構成を生成することである。
この課題に対処するために、キーと値が異なる視覚的表現から学習される新しいKV混合のクロスアテンション機構を導入する。
キーはレイアウト制御のための小さなボトルネックを持つエンコーダから派生し、一方、値はより微細な外観の詳細をキャプチャする大きなボトルネックエンコーダから導かれる。
これらの相補的ソースからキーと値を混合することにより、オブジェクト配置、ポーズ、合成の柔軟なバリエーションをサポートしながら、視覚的プロンプトの同一性を維持する。
さらに,提案手法のアイデンティティの保存とレイアウトの正確性を改善するために,オブジェクトレベルの構成ガイダンスを提案する。
以上の結果から,本手法は各視覚的プロンプトの特徴を保存し,テキスト・画像生成の創造的可能性を高める多様なシーン構成を創出することを示す。
関連論文リスト
- Bringing Characters to New Stories: Training-Free Theme-Specific Image Generation via Dynamic Visual Prompting [71.29100512700064]
テーマ固有の画像生成のためのトレーニング不要なT-Prompterを提案する。
T-Prompterは参照イメージを生成モデルに統合し、ユーザはターゲットテーマをシームレスに指定できる。
提案手法は,一貫したストーリー生成,キャラクターデザイン,リアルなキャラクタ生成,スタイル誘導画像生成を可能にする。
論文 参考訳(メタデータ) (2025-01-26T19:01:19Z) - Nested Attention: Semantic-aware Attention Values for Concept Personalization [78.90196530697897]
我々はNested Attentionを紹介した。これはモデル内の既存のクロスアテンション層にリッチで表現豊かなイメージ表現を注入する新しいメカニズムである。
私たちのキーとなるアイデアは、ネストした注意層から得られたクエリ依存の主観値を生成し、生成した画像の各領域について関連する主観的特徴を選択することである。
論文 参考訳(メタデータ) (2025-01-02T18:52:11Z) - Choose What You Need: Disentangled Representation Learning for Scene Text Recognition, Removal and Editing [47.421888361871254]
シーンテキスト画像は、スタイル情報(フォント、背景)だけでなく、コンテンツ情報(文字、テクスチャ)も含む。
従来の表現学習手法では、全てのタスクに密結合した特徴を使い、結果として準最適性能が得られる。
本稿では,適応性向上のための2種類の特徴を両立させることを目的としたDAR(Disentangled Representation Learning framework)を提案する。
論文 参考訳(メタデータ) (2024-05-07T15:00:11Z) - Leveraging Open-Vocabulary Diffusion to Camouflaged Instance
Segmentation [59.78520153338878]
テキスト・ツー・イメージ拡散技術は、テキスト記述から高品質な画像を生成する素晴らしい能力を示している。
そこで本研究では,オープン語彙を応用した最先端拡散モデルを用いて,多スケールのテキスト・視覚的特徴を学習する手法を提案する。
論文 参考訳(メタデータ) (2023-12-29T07:59:07Z) - Cross-Image Attention for Zero-Shot Appearance Transfer [68.43651329067393]
画像間の意味的対応を暗黙的に確立するクロスイメージアテンション機構を導入する。
ノイズの多い潜在コードを操作する3つのメカニズムと、デノナイジングプロセスを通してモデルの内部表現を利用する。
実験により,本手法は多種多様な対象カテゴリに対して有効であり,形状,大きさ,視点の変動に頑健であることが示された。
論文 参考訳(メタデータ) (2023-11-06T18:33:24Z) - LLM Blueprint: Enabling Text-to-Image Generation with Complex and
Detailed Prompts [60.54912319612113]
拡散に基づく生成モデルは、テキストと画像の生成が著しく進歩するが、長く複雑なテキストプロンプトを処理する際には困難に直面する。
本稿では,Large Language Models (LLM) を利用してテキストプロンプトから重要なコンポーネントを抽出する手法を提案する。
複数のオブジェクトを特徴とする複雑なプロンプトの評価は,ベースライン拡散モデルと比較して,リコールの大幅な改善を示す。
論文 参考訳(メタデータ) (2023-10-16T17:57:37Z) - Splicing ViT Features for Semantic Appearance Transfer [10.295754142142686]
本稿では,ある自然画像の視覚的外観を別の自然画像に意味的に伝達する手法を提案する。
具体的には、ソース構造画像中のオブジェクトを、ターゲットの外観画像中のそれらの意味的関連オブジェクトの視覚的外観で“ペイント”する画像を生成する。
論文 参考訳(メタデータ) (2022-01-02T22:00:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。