論文の概要: SS-CTML: Self-Supervised Cross-Task Mutual Learning for CT Image Reconstruction
- arxiv url: http://arxiv.org/abs/2501.01456v1
- Date: Tue, 31 Dec 2024 04:32:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:11:59.916307
- Title: SS-CTML: Self-Supervised Cross-Task Mutual Learning for CT Image Reconstruction
- Title(参考訳): SS-CTML : CT画像再構成のための自己監督型クロスタスク相互学習
- Authors: Gaofeng Chen, Yaoduo Zhang, Li Huang, Pengfei Wang, Wenyu Zhang, Dong Zeng, Jianhua Ma, Ji He,
- Abstract要約: X線CT(Computerd Tomography)画像再構成において,ペアトレーニングデータセットを用いたSDL(Supervised Deep-learning)技術が広く研究されている。
画像再構成のための自己教師型クロスタスク相互学習(SS-CTML)フレームワークを提案する。
- 参考スコア(独自算出の注目度): 14.197733437855169
- License:
- Abstract: Supervised deep-learning (SDL) techniques with paired training datasets have been widely studied for X-ray computed tomography (CT) image reconstruction. However, due to the difficulties of obtaining paired training datasets in clinical routine, the SDL methods are still away from common uses in clinical practices. In recent years, self-supervised deep-learning (SSDL) techniques have shown great potential for the studies of CT image reconstruction. In this work, we propose a self-supervised cross-task mutual learning (SS-CTML) framework for CT image reconstruction. Specifically, a sparse-view scanned and a limited-view scanned sinogram data are first extracted from a full-view scanned sinogram data, which results in three individual reconstruction tasks, i.e., the full-view CT (FVCT) reconstruction, the sparse-view CT (SVCT) reconstruction, and limited-view CT (LVCT) reconstruction. Then, three neural networks are constructed for the three reconstruction tasks. Considering that the ultimate goals of the three tasks are all to reconstruct high-quality CT images, we therefore construct a set of cross-task mutual learning objectives for the three tasks, in which way, the three neural networks can be self-supervised optimized by learning from each other. Clinical datasets are adopted to evaluate the effectiveness of the proposed framework. Experimental results demonstrate that the SS-CTML framework can obtain promising CT image reconstruction performance in terms of both quantitative and qualitative measurements.
- Abstract(参考訳): X線CT(Computerd Tomography)画像再構成において,ペアトレーニングデータセットを用いたSDL(Supervised Deep-learning)技術が広く研究されている。
しかし, 臨床実習において, ペアトレーニングデータセットの取得が困難であったため, SDL法は臨床実習における一般的な使用には程遠い。
近年, 自己教師型深層学習(SSDL)技術は, CT画像再構成の研究に大きな可能性を示している。
本研究では,CT画像再構成のための自己教師型クロスタスク相互学習(SS-CTML)フレームワークを提案する。
具体的には、スキャンされたスパース・ビューと、スキャンされたリミテッド・ビュー・シングラムデータから、まずフル・ビュー・シングラムデータから、フル・ビュー・CT(FVCT)再構成、スパース・CT(SVCT)再構成、リミテッド・ビュー・CT(LVCT)再構成の3つの個別の再構成タスクを抽出する。
そして、3つの再構成タスクのために3つのニューラルネットワークを構築する。
3つのタスクの最終的な目標は、高品質なCT画像の再構成であるので、3つのタスクのためのクロスタスク相互学習の目標セットを構築し、それによって、3つのニューラルネットワークを互いに学習することで、自己調整することができる。
提案フレームワークの有効性を評価するために,臨床データセットを採用した。
実験結果から, SS-CTMLフレームワークは定量的および定性的な測定の両面から, 有望なCT画像再構成性能が得られることが示された。
関連論文リスト
- Abnormality-Driven Representation Learning for Radiology Imaging [0.8321462983924758]
病変強調型コントラスト学習(LeCL)は,CTスキャンの異なる部位にわたる2次元軸方向スライスにおける異常により引き起こされる視覚的表現を得るための新しい手法である。
本研究は, 腫瘍病変位置, 肺疾患検出, 患者ステージングの3つの臨床的課題に対するアプローチを, 最先端の4つの基礎モデルと比較した。
論文 参考訳(メタデータ) (2024-11-25T13:53:26Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - C^2RV: Cross-Regional and Cross-View Learning for Sparse-View CBCT Reconstruction [17.54830070112685]
コーンビームCT(CBCT)は医療現場で広く用いられている画像技術である。
コーン状X線による測定により, CBCTの復元が困難になる。
本稿では,3次元空間におけるクロスリージョン学習を実現するために,明示的なマルチスケールボリューム表現を活用してC2RVを提案する。
論文 参考訳(メタデータ) (2024-06-06T09:37:56Z) - Enhancing Low-dose CT Image Reconstruction by Integrating Supervised and
Unsupervised Learning [13.17680480211064]
X線CT画像再構成のためのハイブリッド教師なし学習フレームワークを提案する。
提案された各訓練ブロックは、決定論的MBIRソルバとニューラルネットワークで構成されている。
限られた訓練データを用いた低用量CT画像再構成における本学習ハイブリッドモデルの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-19T20:23:59Z) - Towards Head Computed Tomography Image Reconstruction Standardization
with Deep Learning Assisted Automatic Detection [5.288684776927016]
頭部CT像の3次元再構成は組織構造の複雑な空間的関係を解明する。
偏差のない最適な頭部CTスキャンを確保することは、技術者による低い位置決め、患者の身体的制約、CTスキャナの傾斜角度制限など、臨床環境では困難である。
そこで本研究では,手動による介入を低減し,精度と再現性を向上し,効率的な頭部CT画像の3D再構成法を提案する。
論文 参考訳(メタデータ) (2023-07-31T06:58:49Z) - Multi-View Vertebra Localization and Identification from CT Images [57.56509107412658]
我々は,CT画像からの多視点椎体局在と同定を提案する。
本研究では,3次元問題を異なる視点における2次元局所化および識別タスクに変換する。
本手法は,多視点グローバル情報を自然に学習することができる。
論文 参考訳(メタデータ) (2023-07-24T14:43:07Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
視覚変換器(ViT)をベースとした3次元脳MRIセグメンテーションタスクのための新しいアテンテーティブシンメトリオートエンコーダを提案する。
事前学習の段階では、提案するオートエンコーダがより注意を払って、勾配測定値に従って情報パッチを再構築する。
実験の結果,提案手法は最先端の自己教師付き学習法や医用画像分割モデルよりも優れていた。
論文 参考訳(メタデータ) (2022-09-19T09:43:19Z) - 3D helical CT Reconstruction with a Memory Efficient Learned Primal-Dual
Architecture [1.3518297878940662]
本稿では、ドメイン適応型ニューラルネットワークアーキテクチャであるLearned Primal-Dual(LPD)を改良し、この環境での再構築に応用することができる。
フルサイズの臨床データに非ロール型ディープラーニングアーキテクチャを適用したのはこれが初めてである。
論文 参考訳(メタデータ) (2022-05-24T10:32:32Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
新型コロナの診断を改善するための多段階集中移動学習フレームワークを提案する。
提案するフレームワークは、複数のソースタスクと異なるドメインのデータから知識を学習し、正確な診断モデルを訓練する3つの段階からなる。
本稿では,肺CT画像のマルチスケール表現を学習するための自己教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-01-14T01:39:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。