DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution
- URL: http://arxiv.org/abs/2212.07613v2
- Date: Sat, 17 Dec 2022 01:51:55 GMT
- Title: DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution
- Authors: Junbo Qiao, Shaohui Lin, Yunlun Zhang, Wei Li, Jie Hu, Gaoqi He,
Changbo Wang, Zhuangli Ma
- Abstract summary: Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
- Score: 15.694407977871341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real-world image super-resolution (RISR) has received increased focus for
improving the quality of SR images under unknown complex degradation. Existing
methods rely on the heavy SR models to enhance low-resolution (LR) images of
different degradation levels, which significantly restricts their practical
deployments on resource-limited devices. In this paper, we propose a novel
Dynamic Channel Splitting scheme for efficient Real-world Image
Super-Resolution, termed DCS-RISR. Specifically, we first introduce the light
degradation prediction network to regress the degradation vector to simulate
the real-world degradations, upon which the channel splitting vector is
generated as the input for an efficient SR model. Then, a learnable octave
convolution block is proposed to adaptively decide the channel splitting scale
for low- and high-frequency features at each block, reducing computation
overhead and memory cost by offering the large scale to low-frequency features
and the small scale to the high ones. To further improve the RISR performance,
Non-local regularization is employed to supplement the knowledge of patches
from LR and HR subspace with free-computation inference. Extensive experiments
demonstrate the effectiveness of DCS-RISR on different benchmark datasets. Our
DCS-RISR not only achieves the best trade-off between computation/parameter and
PSNR/SSIM metric, and also effectively handles real-world images with different
degradation levels.
Related papers
- ICF-SRSR: Invertible scale-Conditional Function for Self-Supervised
Real-world Single Image Super-Resolution [60.90817228730133]
Single image super-resolution (SISR) is a challenging problem that aims to up-sample a given low-resolution (LR) image to a high-resolution (HR) counterpart.
Recent approaches are trained on simulated LR images degraded by simplified down-sampling operators.
We propose a novel Invertible scale-Conditional Function (ICF) which can scale an input image and then restore the original input with different scale conditions.
arXiv Detail & Related papers (2023-07-24T12:42:45Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Real Image Super-Resolution using GAN through modeling of LR and HR
process [20.537597542144916]
We propose a learnable adaptive sinusoidal nonlinearities incorporated in LR and SR models by directly learn degradation distributions.
We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments.
arXiv Detail & Related papers (2022-10-19T09:23:37Z) - Effective Invertible Arbitrary Image Rescaling [77.46732646918936]
Invertible Neural Networks (INN) are able to increase upscaling accuracy significantly by optimizing the downscaling and upscaling cycle jointly.
A simple and effective invertible arbitrary rescaling network (IARN) is proposed to achieve arbitrary image rescaling by training only one model in this work.
It is shown to achieve a state-of-the-art (SOTA) performance in bidirectional arbitrary rescaling without compromising perceptual quality in LR outputs.
arXiv Detail & Related papers (2022-09-26T22:22:30Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
Real-world image super-resolution (Real-ISR) is a challenging task due to the unknown complex degradation of real-world images.
Recent research on Real-ISR has achieved significant progress by modeling the image degradation space.
We propose an efficient degradation-adaptive super-resolution (DASR) network, whose parameters are adaptively specified by estimating the degradation of each input image.
arXiv Detail & Related papers (2022-03-27T05:59:13Z) - Asymmetric CNN for image super-resolution [102.96131810686231]
Deep convolutional neural networks (CNNs) have been widely applied for low-level vision over the past five years.
We propose an asymmetric CNN (ACNet) comprising an asymmetric block (AB), a mem?ory enhancement block (MEB) and a high-frequency feature enhancement block (HFFEB) for image super-resolution.
Our ACNet can effectively address single image super-resolution (SISR), blind SISR and blind SISR of blind noise problems.
arXiv Detail & Related papers (2021-03-25T07:10:46Z) - Frequency Consistent Adaptation for Real World Super Resolution [64.91914552787668]
We propose a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying Super-Resolution (SR) methods to the real scene.
We estimate degradation kernels from unsupervised images and generate the corresponding Low-Resolution (LR) images.
Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models.
arXiv Detail & Related papers (2020-12-18T08:25:39Z) - Deep Cyclic Generative Adversarial Residual Convolutional Networks for
Real Image Super-Resolution [20.537597542144916]
We consider a deep cyclic network structure to maintain the domain consistency between the LR and HR data distributions.
We propose the Super-Resolution Residual Cyclic Generative Adversarial Network (SRResCycGAN) by training with a generative adversarial network (GAN) framework for the LR to HR domain translation.
arXiv Detail & Related papers (2020-09-07T11:11:18Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR)
We propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB)
IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR.
RB converts low-frequency features into high-frequency features by fusing global
arXiv Detail & Related papers (2020-07-08T18:03:40Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.