AI-Enabled Operations at Fermi Complex: Multivariate Time Series Prediction for Outage Prediction and Diagnosis
- URL: http://arxiv.org/abs/2501.01509v1
- Date: Thu, 02 Jan 2025 19:31:48 GMT
- Title: AI-Enabled Operations at Fermi Complex: Multivariate Time Series Prediction for Outage Prediction and Diagnosis
- Authors: Milan Jain, Burcu O. Mutlu, Caleb Stam, Jan Strube, Brian A. Schupbach, Jason M. St. John, William A. Pellico,
- Abstract summary: Main Control Room of Fermilab accelerator complex continuously gathers extensive time-series data from thousands of sensors monitoring the beam.
unplanned events such as trips or voltage fluctuations often result in beam outages, causing operational downtime.
This downtime not only consumes operator effort in diagnosing and addressing the issue but also leads to unnecessary energy consumption by idle machines awaiting beam restoration.
- Score: 0.6282171844772421
- License:
- Abstract: The Main Control Room of the Fermilab accelerator complex continuously gathers extensive time-series data from thousands of sensors monitoring the beam. However, unplanned events such as trips or voltage fluctuations often result in beam outages, causing operational downtime. This downtime not only consumes operator effort in diagnosing and addressing the issue but also leads to unnecessary energy consumption by idle machines awaiting beam restoration. The current threshold-based alarm system is reactive and faces challenges including frequent false alarms and inconsistent outage-cause labeling. To address these limitations, we propose an AI-enabled framework that leverages predictive analytics and automated labeling. Using data from $2,703$ Linac devices and $80$ operator-labeled outages, we evaluate state-of-the-art deep learning architectures, including recurrent, attention-based, and linear models, for beam outage prediction. Additionally, we assess a Random Forest-based labeling system for providing consistent, confidence-scored outage annotations. Our findings highlight the strengths and weaknesses of these architectures for beam outage prediction and identify critical gaps that must be addressed to fully harness AI for transitioning downtime handling from reactive to predictive, ultimately reducing downtime and improving decision-making in accelerator management.
Related papers
- Transformer-Based Bearing Fault Detection using Temporal Decomposition Attention Mechanism [0.40964539027092917]
Bearing fault detection is a critical task in predictive maintenance, where accurate and timely fault identification can prevent costly downtime and equipment damage.
Traditional attention mechanisms in Transformer neural networks often struggle to capture the complex temporal patterns in bearing vibration data, leading to suboptimal performance.
We propose a novel attention mechanism, Temporal Decomposition Attention (TDA), which combines temporal bias encoding with seasonal-trend decomposition to capture both long-term dependencies and periodic fluctuations in time series data.
arXiv Detail & Related papers (2024-12-15T16:51:31Z) - A Real-time Anomaly Detection Using Convolutional Autoencoder with Dynamic Threshold [0.0]
This work introduces a hybrid modeling approach combining statistics and a Convolutional Autoencoder with a dynamic threshold.
The solution includes a real-time, meter-level anomaly detection system that connects to an advanced monitoring system.
arXiv Detail & Related papers (2024-04-05T11:03:36Z) - TimePillars: Temporally-Recurrent 3D LiDAR Object Detection [8.955064958311517]
TimePillars is a temporally-recurrent object detection pipeline.
It exploits the pillar representation of LiDAR data across time.
We show how basic building blocks are enough to achieve robust and efficient results.
arXiv Detail & Related papers (2023-12-22T10:25:27Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Forecasting Particle Accelerator Interruptions Using Logistic LASSO
Regression [62.997667081978825]
Unforeseen particle accelerator interruptions, also known as interlocks, lead to abrupt operational changes despite being necessary safety measures.
We propose a simple yet powerful binary classification model aiming to forecast such interruptions.
The model is formulated as logistic regression penalized by at least absolute shrinkage and selection operator.
arXiv Detail & Related papers (2023-03-15T23:11:30Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Evaluating Short-Term Forecasting of Multiple Time Series in IoT
Environments [67.24598072875744]
Internet of Things (IoT) environments are monitored via a large number of IoT enabled sensing devices.
To alleviate this issue, sensors are often configured to operate at relatively low sampling frequencies.
This can hamper dramatically subsequent decision-making, such as forecasting.
arXiv Detail & Related papers (2022-06-15T19:46:59Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - StrObe: Streaming Object Detection from LiDAR Packets [73.27333924964306]
Rolling shutter LiDARs emitted as a stream of packets, each covering a sector of the 360deg coverage.
Modern perception algorithms wait for the full sweep to be built before processing the data, which introduces an additional latency.
In this paper we propose StrObe, a novel approach that minimizes latency by ingesting LiDAR packets and emitting a stream of detections without waiting for the full sweep to be built.
arXiv Detail & Related papers (2020-11-12T14:57:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.