Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
- URL: http://arxiv.org/abs/2501.01557v2
- Date: Wed, 15 Jan 2025 18:29:56 GMT
- Title: Click-Calib: A Robust Extrinsic Calibration Method for Surround-View Systems
- Authors: Lihao Wang,
- Abstract summary: Click-Calib is a pattern-free approach for offline SVS extrinsic calibration.
Unlike other offline calibration approaches, Click-Calib optimize camera poses over a wide range by minimizing reprojection distance errors.
Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods.
- Score: 1.9761774213809036
- License:
- Abstract: Surround-View System (SVS) is an essential component in Advanced Driver Assistance System (ADAS) and requires precise calibrations. However, conventional offline extrinsic calibration methods are cumbersome and time-consuming as they rely heavily on physical patterns. Additionally, these methods primarily focus on short-range areas surrounding the vehicle, resulting in lower calibration quality in more distant zones. To address these limitations, we propose Click-Calib, a pattern-free approach for offline SVS extrinsic calibration. Without requiring any special setup, the user only needs to click a few keypoints on the ground in natural scenes. Unlike other offline calibration approaches, Click-Calib optimizes camera poses over a wide range by minimizing reprojection distance errors of keypoints, thereby achieving accurate calibrations at both short and long distances. Furthermore, Click-Calib supports both single-frame and multiple-frame modes, with the latter offering even better results. Evaluations on our in-house dataset and the public WoodScape dataset demonstrate its superior accuracy and robustness compared to baseline methods. Code is available at https://github.com/lwangvaleo/click_calib.
Related papers
- PTZ-Calib: Robust Pan-Tilt-Zoom Camera Calibration [32.4466455429431]
In this paper, we present a robust two-stage camera calibration method.
In the offline stage, we first uniformly select a set of reference images that sufficiently overlap to encompass a complete 360deg view.
In the online stage, we demonstrate the calibration of any new viewpoints as a relocalization problem.
arXiv Detail & Related papers (2025-02-13T08:45:43Z) - UniCal: Unified Neural Sensor Calibration [32.7372115947273]
Self-driving vehicles (SDVs) require accurate calibration of LiDARs and cameras to fuse sensor data accurately for autonomy.
Traditional calibration methods leverage fiducials captured in a controlled and structured scene and compute correspondences to optimize over.
We propose UniCal, a unified framework for effortlessly calibrating SDVs equipped with multiple LiDARs and cameras.
arXiv Detail & Related papers (2024-09-27T17:56:04Z) - Kalib: Markerless Hand-Eye Calibration with Keypoint Tracking [52.4190876409222]
Hand-eye calibration involves estimating the transformation between the camera and the robot.
Recent advancements in deep learning offer markerless techniques, but they present challenges.
We propose Kalib, an automatic and universal markerless hand-eye calibration pipeline.
arXiv Detail & Related papers (2024-08-20T06:03:40Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - Unbiased Estimator for Distorted Conics in Camera Calibration [17.310876803936782]
We present a novel formulation for conic-based calibration using moments.
Our derivation is based on the mathematical finding that the first moment can be estimated without bias even under distortion.
This allows us to track moment changes during projection and distortion, ensuring the preservation of the first moment of the distorted conic.
arXiv Detail & Related papers (2024-03-07T15:29:11Z) - EdgeCalib: Multi-Frame Weighted Edge Features for Automatic Targetless
LiDAR-Camera Calibration [15.057994140880373]
We introduce an edge-based approach for automatic online calibration of LiDAR and cameras in real-world scenarios.
The edge features, which are prevalent in various environments, are aligned in both images and point clouds to determine the extrinsic parameters.
The results show a state-of-the-art rotation accuracy of 0.086deg and a translation accuracy of 0.977 cm, outperforming existing edge-based calibration methods in both precision and robustness.
arXiv Detail & Related papers (2023-10-25T13:27:56Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - CRLF: Automatic Calibration and Refinement based on Line Feature for
LiDAR and Camera in Road Scenes [16.201111055979453]
We propose a novel method to calibrate the extrinsic parameter for LiDAR and camera in road scenes.
Our method introduces line features from static straight-line-shaped objects such as road lanes and poles in both image and point cloud.
We conduct extensive experiments on KITTI and our in-house dataset, quantitative and qualitative results demonstrate the robustness and accuracy of our method.
arXiv Detail & Related papers (2021-03-08T06:02:44Z) - Infrastructure-based Multi-Camera Calibration using Radial Projections [117.22654577367246]
Pattern-based calibration techniques can be used to calibrate the intrinsics of the cameras individually.
Infrastucture-based calibration techniques are able to estimate the extrinsics using 3D maps pre-built via SLAM or Structure-from-Motion.
We propose to fully calibrate a multi-camera system from scratch using an infrastructure-based approach.
arXiv Detail & Related papers (2020-07-30T09:21:04Z) - Uncertainty Quantification and Deep Ensembles [79.4957965474334]
We show that deep-ensembles do not necessarily lead to improved calibration properties.
We show that standard ensembling methods, when used in conjunction with modern techniques such as mixup regularization, can lead to less calibrated models.
This text examines the interplay between three of the most simple and commonly used approaches to leverage deep learning when data is scarce.
arXiv Detail & Related papers (2020-07-17T07:32:24Z) - Calibrating Deep Neural Networks using Focal Loss [77.92765139898906]
Miscalibration is a mismatch between a model's confidence and its correctness.
We show that focal loss allows us to learn models that are already very well calibrated.
We show that our approach achieves state-of-the-art calibration without compromising on accuracy in almost all cases.
arXiv Detail & Related papers (2020-02-21T17:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.