Uncertainty and Energy based Loss Guided Semi-Supervised Semantic Segmentation
- URL: http://arxiv.org/abs/2501.01640v1
- Date: Fri, 03 Jan 2025 05:18:38 GMT
- Title: Uncertainty and Energy based Loss Guided Semi-Supervised Semantic Segmentation
- Authors: Rini Smita Thakur, Vinod K. Kurmi,
- Abstract summary: Semi-supervised (SS) semantic segmentation exploits both labeled and unlabeled images to overcome tedious and costly pixel-level annotation problems.
This work uses aleatoric or data uncertainty and energy based modeling in intersection-union pseudo supervised network.
- Score: 1.5269945475810085
- License:
- Abstract: Semi-supervised (SS) semantic segmentation exploits both labeled and unlabeled images to overcome tedious and costly pixel-level annotation problems. Pseudolabel supervision is one of the core approaches of training networks with both pseudo labels and ground-truth labels. This work uses aleatoric or data uncertainty and energy based modeling in intersection-union pseudo supervised network.The aleatoric uncertainty is modeling the inherent noise variations of the data in a network with two predictive branches. The per-pixel variance parameter obtained from the network gives a quantitative idea about the data uncertainty. Moreover, energy-based loss realizes the potential of generative modeling on the downstream SS segmentation task. The aleatoric and energy loss are applied in conjunction with pseudo-intersection labels, pseudo-union labels, and ground-truth on the respective network branch. The comparative analysis with state-of-the-art methods has shown improvement in performance metrics.
Related papers
- SemSim: Revisiting Weak-to-Strong Consistency from a Semantic Similarity Perspective for Semi-supervised Medical Image Segmentation [18.223854197580145]
Semi-supervised learning (SSL) for medical image segmentation is a challenging yet highly practical task.
We propose a novel framework based on FixMatch, named SemSim, powered by two appealing designs from semantic similarity perspective.
We show that SemSim yields consistent improvements over the state-of-the-art methods across three public segmentation benchmarks.
arXiv Detail & Related papers (2024-10-17T12:31:37Z) - Distribution Consistency based Self-Training for Graph Neural Networks
with Sparse Labels [33.89511660654271]
Few-shot node classification poses a significant challenge for Graph Neural Networks (GNNs)
Self-training has emerged as a widely popular framework to leverage the abundance of unlabeled data.
We propose a novel Distribution-Consistent Graph Self-Training framework to identify pseudo-labeled nodes that are both informative and capable of redeeming the distribution discrepancy.
arXiv Detail & Related papers (2024-01-18T22:07:48Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Semi-Supervised Semantic Segmentation With Region Relevance [28.92449538610617]
Semi-supervised semantic segmentation aims to learn from a small amount of labeled data and plenty of unlabeled ones.
The most common approach is to generate pseudo-labels for unlabeled images to augment the training data.
This paper proposes a Region Relevance Network (RRN) to alleviate the problem mentioned above.
arXiv Detail & Related papers (2023-04-23T04:51:27Z) - S3: Supervised Self-supervised Learning under Label Noise [53.02249460567745]
In this paper we address the problem of classification in the presence of label noise.
In the heart of our method is a sample selection mechanism that relies on the consistency between the annotated label of a sample and the distribution of the labels in its neighborhood in the feature space.
Our method significantly surpasses previous methods on both CIFARCIFAR100 with artificial noise and real-world noisy datasets such as WebVision and ANIMAL-10N.
arXiv Detail & Related papers (2021-11-22T15:49:20Z) - Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision [56.950950382415925]
We propose a novel consistency regularization approach, called cross pseudo supervision (CPS)
The CPS consistency has two roles: encourage high similarity between the predictions of two perturbed networks for the same input image, and expand training data by using the unlabeled data with pseudo labels.
Experiment results show that our approach achieves the state-of-the-art semi-supervised segmentation performance on Cityscapes and PASCAL VOC 2012.
arXiv Detail & Related papers (2021-06-02T15:21:56Z) - Co-matching: Combating Noisy Labels by Augmentation Anchoring [2.0349696181833337]
We propose a learning algorithm called Co-matching, which balances the consistency and divergence between two networks by augmentation anchoring.
Experiments on three benchmark datasets demonstrate that Co-matching achieves results comparable to the state-of-the-art methods.
arXiv Detail & Related papers (2021-03-23T20:00:13Z) - Provable Generalization of SGD-trained Neural Networks of Any Width in
the Presence of Adversarial Label Noise [85.59576523297568]
We consider a one-hidden-layer leaky ReLU network of arbitrary width trained by gradient descent.
We prove that SGD produces neural networks that have classification accuracy competitive with that of the best halfspace over the distribution.
arXiv Detail & Related papers (2021-01-04T18:32:49Z) - Exploiting Sample Uncertainty for Domain Adaptive Person
Re-Identification [137.9939571408506]
We estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels.
Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2020-12-16T04:09:04Z) - Improving Face Recognition by Clustering Unlabeled Faces in the Wild [77.48677160252198]
We propose a novel identity separation method based on extreme value theory.
It greatly reduces the problems caused by overlapping-identity label noise.
Experiments on both controlled and real settings demonstrate our method's consistent improvements.
arXiv Detail & Related papers (2020-07-14T12:26:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.