Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
- URL: http://arxiv.org/abs/2502.19707v1
- Date: Thu, 27 Feb 2025 02:48:00 GMT
- Title: Weakly Supervised Segmentation Framework for Thyroid Nodule Based on High-confidence Labels and High-rationality Losses
- Authors: Jianning Chi, Zelan Li, Geng Lin, MingYang Sun, Xiaosheng Yu,
- Abstract summary: We present a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features.<n>Our method achieves state-of-the-art performance on the TN3K and DDTI datasets.
- Score: 8.791228963429383
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Weakly supervised segmentation methods can delineate thyroid nodules in ultrasound images efficiently using training data with coarse labels, but suffer from: 1) low-confidence pseudo-labels that follow topological priors, introducing significant label noise, and 2) low-rationality loss functions that rigidly compare segmentation with labels, ignoring discriminative information for nodules with diverse and complex shapes. To solve these issues, we clarify the objective and references for weakly supervised ultrasound image segmentation, presenting a framework with high-confidence pseudo-labels to represent topological and anatomical information and high-rationality losses to capture multi-level discriminative features. Specifically, we fuse geometric transformations of four-point annotations and MedSAM model results prompted by specific annotations to generate high-confidence box, foreground, and background labels. Our high-rationality learning strategy includes: 1) Alignment loss measuring spatial consistency between segmentation and box label, and topological continuity within the foreground label, guiding the network to perceive nodule location; 2) Contrastive loss pulling features from labeled foreground regions while pushing features from labeled foreground and background regions, guiding the network to learn nodule and background feature distribution; 3) Prototype correlation loss measuring consistency between correlation maps derived by comparing features with foreground and background prototypes, refining uncertain regions to accurate nodule edges. Experimental results show that our method achieves state-of-the-art performance on the TN3K and DDTI datasets. The code is available at https://github.com/bluehenglee/MLI-MSC.
Related papers
- Beyond Point Annotation: A Weakly Supervised Network Guided by Multi-Level Labels Generated from Four-Point Annotation for Thyroid Nodule Segmentation in Ultrasound Image [8.132809580086565]
We propose a weakly-supervised network that generates multi-level labels from four-point annotation to refine constraints for delicate nodule segmentation.
Our proposed network outperforms existing weakly-supervised methods on two public datasets with respect to the accuracy and robustness.
arXiv Detail & Related papers (2024-10-25T06:34:53Z) - Towards Modality-agnostic Label-efficient Segmentation with Entropy-Regularized Distribution Alignment [62.73503467108322]
This topic is widely studied in 3D point cloud segmentation due to the difficulty of annotating point clouds densely.
Until recently, pseudo-labels have been widely employed to facilitate training with limited ground-truth labels.
Existing pseudo-labeling approaches could suffer heavily from the noises and variations in unlabelled data.
We propose a novel learning strategy to regularize the pseudo-labels generated for training, thus effectively narrowing the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2024-08-29T13:31:15Z) - Deep Spectral Methods for Unsupervised Ultrasound Image Interpretation [53.37499744840018]
This paper proposes a novel unsupervised deep learning strategy tailored to ultrasound to obtain easily interpretable tissue separations.
We integrate key concepts from unsupervised deep spectral methods, which combine spectral graph theory with deep learning methods.
We utilize self-supervised transformer features for spectral clustering to generate meaningful segments based on ultrasound-specific metrics and shape and positional priors, ensuring semantic consistency across the dataset.
arXiv Detail & Related papers (2024-08-04T14:30:14Z) - SLoRD: Structural Low-Rank Descriptors for Shape Consistency in Vertebrae Segmentation [13.225110742269543]
We propose a contour-based network for automatic and precise segmentation of vertebrae from CT images.
Specifically, a contour-based network is proposed based on Structural Low-Rank Descriptors for shape consistency, termed SLoRD.
For a more precise representation of contour descriptors, we adopt the spherical coordinate system and devise the spherical centroid.
arXiv Detail & Related papers (2024-07-11T14:39:54Z) - Mitigating Label Noise on Graph via Topological Sample Selection [72.86862597508077]
We propose a $textitTopological Sample Selection$ (TSS) method that boosts the informative sample selection process in a graph by utilising topological information.
We theoretically prove that our procedure minimizes an upper bound of the expected risk under target clean distribution, and experimentally show the superiority of our method compared with state-of-the-art baselines.
arXiv Detail & Related papers (2024-03-04T11:24:51Z) - Weakly-supervised positional contrastive learning: application to
cirrhosis classification [45.63061034568991]
Large medical imaging datasets can be cheaply annotated with low-confidence, weak labels.
Access to high-confidence labels, such as histology-based diagnoses, is rare and costly.
We propose an efficient weakly-supervised positional (WSP) contrastive learning strategy.
arXiv Detail & Related papers (2023-07-10T15:02:13Z) - Robust T-Loss for Medical Image Segmentation [56.524774292536264]
This paper presents a new robust loss function, the T-Loss, for medical image segmentation.
The proposed loss is based on the negative log-likelihood of the Student-t distribution and can effectively handle outliers in the data.
Our experiments show that the T-Loss outperforms traditional loss functions in terms of dice scores on two public medical datasets.
arXiv Detail & Related papers (2023-06-01T14:49:40Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - COSST: Multi-organ Segmentation with Partially Labeled Datasets Using
Comprehensive Supervisions and Self-training [15.639976408273784]
Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated.
It is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential.
We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training.
arXiv Detail & Related papers (2023-04-27T08:55:34Z) - Local contrastive loss with pseudo-label based self-training for
semi-supervised medical image segmentation [13.996217500923413]
Semi/self-supervised learning-based approaches exploit unlabeled data along with limited annotated data.
Recent self-supervised learning methods use contrastive loss to learn good global level representations from unlabeled images.
We propose a local contrastive loss to learn good pixel level features useful for segmentation by exploiting semantic label information.
arXiv Detail & Related papers (2021-12-17T17:38:56Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
We present a method for jointly learning, from purely noisy observations alone, the reliability of individual annotators and the true segmentation label distributions.
We demonstrate the utility of the method on three public medical imaging segmentation datasets with simulated (when necessary) and real diverse annotations.
arXiv Detail & Related papers (2020-07-31T11:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.