Analyzing Aviation Safety Narratives with LDA, NMF and PLSA: A Case Study Using Socrata Datasets
- URL: http://arxiv.org/abs/2501.01690v1
- Date: Fri, 03 Jan 2025 08:14:39 GMT
- Title: Analyzing Aviation Safety Narratives with LDA, NMF and PLSA: A Case Study Using Socrata Datasets
- Authors: Aziida Nanyonga, Graham Wild,
- Abstract summary: This study explores the application of topic modelling techniques on the Socrata dataset spanning from 1908 to 2009.
The analysis identified key themes such as pilot error, mechanical failure, weather conditions, and training deficiencies.
Future directions include integrating additional contextual variables, leveraging neural topic models, and enhancing aviation safety protocols.
- Score: 0.0
- License:
- Abstract: This study explores the application of topic modelling techniques Latent Dirichlet Allocation (LDA), Nonnegative Matrix Factorization (NMF), and Probabilistic Latent Semantic Analysis (PLSA) on the Socrata dataset spanning from 1908 to 2009. Categorized by operator type (military, commercial, and private), the analysis identified key themes such as pilot error, mechanical failure, weather conditions, and training deficiencies. The study highlights the unique strengths of each method: LDA ability to uncover overlapping themes, NMF production of distinct and interpretable topics, and PLSA nuanced probabilistic insights despite interpretative complexity. Statistical analysis revealed that PLSA achieved a coherence score of 0.32 and a perplexity value of -4.6, NMF scored 0.34 and 37.1, while LDA achieved the highest coherence of 0.36 but recorded the highest perplexity at 38.2. These findings demonstrate the value of topic modelling in extracting actionable insights from unstructured aviation safety narratives, aiding in the identification of risk factors and areas for improvement across sectors. Future directions include integrating additional contextual variables, leveraging neural topic models, and enhancing aviation safety protocols. This research provides a foundation for advanced text-mining applications in aviation safety management.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - Exploring Aviation Incident Narratives Using Topic Modeling and Clustering Techniques [0.0]
This study applies advanced natural language processing (NLP) techniques to the National Transportation Safety Board (NTSB) dataset.
Main objectives are identifying latent themes, exploring semantic relationships, assessing probabilistic connections, and cluster incidents based on shared characteristics.
Comparative analysis reveals that LDA performed best with a coherence value of 0.597, pLSA of 0.583, LSA of 0.542, and NMF of 0.437.
arXiv Detail & Related papers (2025-01-14T08:23:15Z) - Comparative Study of Deep Learning Architectures for Textual Damage Level Classification [0.0]
This study aims to leverage Natural Language Processing (NLP) and deep learning models to analyze unstructured text narratives.
Using LSTM, BLSTM, GRU, and sRNN deep learning models, we classify the aircraft damage level incurred during safety occurrences.
The sRNN model emerged as the top performer in terms of recall and accuracy, boasting a remarkable 89%.
arXiv Detail & Related papers (2025-01-03T08:23:29Z) - Comparative Analysis of Topic Modeling Techniques on ATSB Text Narratives Using Natural Language Processing [0.0]
This paper explores the application of four prominent topic modelling techniques, namely Probabilistic Latent Semantic Analysis (pLSA), Latent Semantic Analysis (LSA), Latent Dirichlet Allocation (LDA), and Non-negative Matrix Factorization (NMF)
The study examines each technique's ability to unveil latent thematic structures within the data, providing safety professionals with a systematic approach to gain actionable insights.
arXiv Detail & Related papers (2025-01-02T12:21:07Z) - Explainability of Point Cloud Neural Networks Using SMILE: Statistical Model-Agnostic Interpretability with Local Explanations [0.0]
This study explores the implementation of SMILE, a novel explainability method originally designed for deep neural networks, on point cloud-based models.
The approach demonstrates superior performance in terms of fidelity loss, R2 scores, and robustness across various kernel widths, perturbation numbers, and clustering configurations.
The study further identifies dataset biases in the classification of the 'person' category, emphasizing the necessity for more comprehensive datasets in safety-critical applications.
arXiv Detail & Related papers (2024-10-20T12:13:59Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Topic Modeling Analysis of Aviation Accident Reports: A Comparative
Study between LDA and NMF Models [0.0]
This paper compares two prominent topic modeling techniques, Latent Dirichlet Allocation (LDA) and Non-negative Matrix Factorization (NMF)
LDA demonstrates higher topic coherence, indicating stronger semantic relevance among words within topics.
NMF excelled in producing distinct and granular topics, enabling a more focused analysis of specific aspects of aviation accidents.
arXiv Detail & Related papers (2024-03-04T01:41:07Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - A Comprehensive Survey on Source-free Domain Adaptation [69.17622123344327]
The research of Source-Free Domain Adaptation (SFDA) has drawn growing attention in recent years.
We provide a comprehensive survey of recent advances in SFDA and organize them into a unified categorization scheme.
We compare the results of more than 30 representative SFDA methods on three popular classification benchmarks.
arXiv Detail & Related papers (2023-02-23T06:32:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.