Catch Causal Signals from Edges for Label Imbalance in Graph Classification
- URL: http://arxiv.org/abs/2501.01707v2
- Date: Tue, 07 Jan 2025 14:28:54 GMT
- Title: Catch Causal Signals from Edges for Label Imbalance in Graph Classification
- Authors: Fengrui Zhang, Yujia Yin, Hongzong Li, Yifan Chen, Tianyi Qu,
- Abstract summary: We leverage edge information to disentangle the causal subgraph from the original graph.
Our design leads to improved performance on graph classification tasks with label imbalance issues.
We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv.
- Score: 2.0316763723596063
- License:
- Abstract: Despite significant advancements in causal research on graphs and its application to cracking label imbalance, the role of edge features in detecting the causal effects within graphs has been largely overlooked, leaving existing methods with untapped potential for further performance gains. In this paper, we enhance the causal attention mechanism through effectively leveraging edge information to disentangle the causal subgraph from the original graph, as well as further utilizing edge features to reshape graph representations. Capturing more comprehensive causal signals, our design leads to improved performance on graph classification tasks with label imbalance issues. We evaluate our approach on real-word datasets PTC, Tox21, and ogbg-molhiv, observing improvements over baselines. Overall, we highlight the importance of edge features in graph causal detection and provide a promising direction for addressing label imbalance challenges in graph-level tasks. The model implementation details and the codes are available on https://github.com/fengrui-z/ECAL
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
We propose a novel approach, Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR) for graph-level anomaly detection.
The model combines the motif of one graph, the core subgraph containing the identification (category) information, and the contextual subgraph of another graph to produce a raw counterfactual graph.
MotifCAR can generate high-quality counterfactual graphs.
arXiv Detail & Related papers (2024-07-18T08:04:57Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - Causally-guided Regularization of Graph Attention Improves
Generalizability [69.09877209676266]
We introduce CAR, a general-purpose regularization framework for graph attention networks.
Methodname aligns the attention mechanism with the causal effects of active interventions on graph connectivity.
For social media network-sized graphs, a CAR-guided graph rewiring approach could allow us to combine the scalability of graph convolutional methods with the higher performance of graph attention.
arXiv Detail & Related papers (2022-10-20T01:29:10Z) - Features Based Adaptive Augmentation for Graph Contrastive Learning [0.0]
Self-Supervised learning aims to eliminate the need for expensive annotation in graph representation learning.
We introduce a Feature Based Adaptive Augmentation (FebAA) approach, which identifies and preserves potentially influential features.
We successfully improved the accuracy of GRACE and BGRL on eight graph representation learning's benchmark datasets.
arXiv Detail & Related papers (2022-07-05T03:41:20Z) - How to Find Your Friendly Neighborhood: Graph Attention Design with
Self-Supervision [16.86132592140062]
We propose a self-supervised graph attention network (SuperGAT) for noisy graphs.
We exploit two attention forms compatible with a self-supervised task to predict edges.
By encoding edges, SuperGAT learns more expressive attention in distinguishing mislinked neighbors.
arXiv Detail & Related papers (2022-04-11T05:45:09Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
Graph Contrastive Learning (GCL) has shown promising performance in graph representation learning (GRL) without the supervision of manual annotations.
This paper proposes an effective graph complementary contrastive learning approach named GraphCoCo to tackle the above issue.
arXiv Detail & Related papers (2022-03-24T02:58:36Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Hierarchical Adaptive Pooling by Capturing High-order Dependency for
Graph Representation Learning [18.423192209359158]
Graph neural networks (GNN) have been proven to be mature enough for handling graph-structured data on node-level graph representation learning tasks.
This paper proposes a hierarchical graph-level representation learning framework, which is adaptively sensitive to graph structures.
arXiv Detail & Related papers (2021-04-13T06:22:24Z) - Graph Information Bottleneck for Subgraph Recognition [103.37499715761784]
We propose a framework of Graph Information Bottleneck (GIB) for the subgraph recognition problem in deep graph learning.
Under this framework, one can recognize the maximally informative yet compressive subgraph, named IB-subgraph.
We evaluate the properties of the IB-subgraph in three application scenarios: improvement of graph classification, graph interpretation and graph denoising.
arXiv Detail & Related papers (2020-10-12T09:32:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.