Augmentation Matters: A Mix-Paste Method for X-Ray Prohibited Item Detection under Noisy Annotations
- URL: http://arxiv.org/abs/2501.01733v1
- Date: Fri, 03 Jan 2025 09:51:51 GMT
- Title: Augmentation Matters: A Mix-Paste Method for X-Ray Prohibited Item Detection under Noisy Annotations
- Authors: Ruikang Chen, Yan Yan, Jing-Hao Xue, Yang Lu, Hanzi Wang,
- Abstract summary: Automatic X-ray prohibited item detection is vital for public safety.
Existing deep learning-based methods all assume that the annotations of training X-ray images are correct.
We propose an effective label-aware mixed patch paste augmentation method (Mix-Paste)
We show the superiority of our method on X-ray datasets under noisy annotations.
- Score: 52.065764858163476
- License:
- Abstract: Automatic X-ray prohibited item detection is vital for public safety. Existing deep learning-based methods all assume that the annotations of training X-ray images are correct. However, obtaining correct annotations is extremely hard if not impossible for large-scale X-ray images, where item overlapping is ubiquitous.As a result, X-ray images are easily contaminated with noisy annotations, leading to performance deterioration of existing methods.In this paper, we address the challenging problem of training a robust prohibited item detector under noisy annotations (including both category noise and bounding box noise) from a novel perspective of data augmentation, and propose an effective label-aware mixed patch paste augmentation method (Mix-Paste). Specifically, for each item patch, we mix several item patches with the same category label from different images and replace the original patch in the image with the mixed patch. In this way, the probability of containing the correct prohibited item within the generated image is increased. Meanwhile, the mixing process mimics item overlapping, enabling the model to learn the characteristics of X-ray images. Moreover, we design an item-based large-loss suppression (LLS) strategy to suppress the large losses corresponding to potentially positive predictions of additional items due to the mixing operation. We show the superiority of our method on X-ray datasets under noisy annotations. In addition, we evaluate our method on the noisy MS-COCO dataset to showcase its generalization ability. These results clearly indicate the great potential of data augmentation to handle noise annotations. The source code is released at https://github.com/wscds/Mix-Paste.
Related papers
- BGM: Background Mixup for X-ray Prohibited Items Detection [75.58709178012502]
This paper introduces a novel data augmentation approach tailored for prohibited item detection, leveraging unique characteristics inherent to X-ray imagery.
Our method is motivated by observations of physical properties including: 1) X-ray Transmission Imagery: Unlike reflected light images, transmitted X-ray pixels represent composite information from multiple materials along the imaging path.
We propose a simple yet effective X-ray image augmentation technique, Background Mixup (BGM), for prohibited item detection in security screening contexts.
arXiv Detail & Related papers (2024-11-30T12:26:55Z) - Learning Camouflaged Object Detection from Noisy Pseudo Label [60.9005578956798]
This paper introduces the first weakly semi-supervised Camouflaged Object Detection (COD) method.
It aims for budget-efficient and high-precision camouflaged object segmentation with an extremely limited number of fully labeled images.
We propose a noise correction loss that facilitates the model's learning of correct pixels in the early learning stage.
When using only 20% of fully labeled data, our method shows superior performance over the state-of-the-art methods.
arXiv Detail & Related papers (2024-07-18T04:53:51Z) - Learning to Segment from Noisy Annotations: A Spatial Correction
Approach [12.604673584405385]
Noisy labels can significantly affect the performance of deep neural networks (DNNs)
We propose a novel Markov model for segmentation noisy annotations that encodes both spatial correlation and bias.
Our approach outperforms current state-of-the-art methods on both synthetic and real-world noisy annotations.
arXiv Detail & Related papers (2023-07-21T00:27:40Z) - Cross-Modal Contrastive Learning for Abnormality Classification and
Localization in Chest X-rays with Radiomics using a Feedback Loop [63.81818077092879]
We propose an end-to-end semi-supervised cross-modal contrastive learning framework for medical images.
We first apply an image encoder to classify the chest X-rays and to generate the image features.
The radiomic features are then passed through another dedicated encoder to act as the positive sample for the image features generated from the same chest X-ray.
arXiv Detail & Related papers (2021-04-11T09:16:29Z) - Over-sampling De-occlusion Attention Network for Prohibited Items
Detection in Noisy X-ray Images [35.35752470993847]
Security inspection is X-ray scanning for personal belongings in suitcases.
Traditional CNN-based models trained through common image recognition datasets fail to achieve satisfactory performance in this scenario.
We propose an over-sampling de-occlusion attention network (DOAM-O), which consists of a novel de-occlusion attention module and a new over-sampling training strategy.
arXiv Detail & Related papers (2021-03-01T07:17:37Z) - Data-driven Meta-set Based Fine-Grained Visual Classification [61.083706396575295]
We propose a data-driven meta-set based approach to deal with noisy web images for fine-grained recognition.
Specifically, guided by a small amount of clean meta-set, we train a selection net in a meta-learning manner to distinguish in- and out-of-distribution noisy images.
arXiv Detail & Related papers (2020-08-06T03:04:16Z) - Towards Noise-resistant Object Detection with Noisy Annotations [119.63458519946691]
Training deep object detectors requires significant amount of human-annotated images with accurate object labels and bounding box coordinates.
Noisy annotations are much more easily accessible, but they could be detrimental for learning.
We address the challenging problem of training object detectors with noisy annotations, where the noise contains a mixture of label noise and bounding box noise.
arXiv Detail & Related papers (2020-03-03T01:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.