論文の概要: Creating Artificial Students that Never Existed: Leveraging Large Language Models and CTGANs for Synthetic Data Generation
- arxiv url: http://arxiv.org/abs/2501.01793v1
- Date: Fri, 03 Jan 2025 12:52:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-06 15:12:12.279328
- Title: Creating Artificial Students that Never Existed: Leveraging Large Language Models and CTGANs for Synthetic Data Generation
- Title(参考訳): 存在しない人工学生の創出--大規模言語モデルとCTGANを活用した合成データ生成
- Authors: Mohammad Khalil, Farhad Vadiee, Ronas Shakya, Qinyi Liu,
- Abstract要約: 総合的なデータを利用して、学習分析モデルを提供するための人工的な学生を創出できるかどうかを検討する。
本研究は,学生データに類似した高品質な合成データセットを作成する上で,これらの手法の強い可能性を示すものである。
- 参考スコア(独自算出の注目度): 2.4374097382908477
- License:
- Abstract: In this study, we explore the growing potential of AI and deep learning technologies, particularly Generative Adversarial Networks (GANs) and Large Language Models (LLMs), for generating synthetic tabular data. Access to quality students data is critical for advancing learning analytics, but privacy concerns and stricter data protection regulations worldwide limit their availability and usage. Synthetic data offers a promising alternative. We investigate whether synthetic data can be leveraged to create artificial students for serving learning analytics models. Using the popular GAN model CTGAN and three LLMs- GPT2, DistilGPT2, and DialoGPT, we generate synthetic tabular student data. Our results demonstrate the strong potential of these methods to produce high-quality synthetic datasets that resemble real students data. To validate our findings, we apply a comprehensive set of utility evaluation metrics to assess the statistical and predictive performance of the synthetic data and compare the different generator models used, specially the performance of LLMs. Our study aims to provide the learning analytics community with valuable insights into the use of synthetic data, laying the groundwork for expanding the field methodological toolbox with new innovative approaches for learning analytics data generation.
- Abstract(参考訳): 本研究では,AIとディープラーニング技術,特にGAN(Generative Adversarial Networks)とLLM(Large Language Models)による合成表データ生成の可能性について検討する。
質の高い学生データへのアクセスは、学習分析の進歩に不可欠だが、プライバシー上の懸念と厳格なデータ保護規制は、世界中のデータ利用と利用を制限している。
合成データは有望な代替手段を提供する。
総合的なデータを利用して、学習分析モデルを提供するための人工的な学生を創出できるかどうかを検討する。
一般的なGANモデルCTGANと3つのLCM-GPT2, DistilGPT2, DialoGPTを用いて, 合成表形式の学生データを生成する。
本研究は,学生データに類似した高品質な合成データセットを作成する上で,これらの手法の強い可能性を示すものである。
本研究は,合成データの統計的および予測性能を評価するために,実用性評価指標の総合的セットを適用し,使用するジェネレータモデル,特にLLMの性能を比較した。
本研究は, 学習分析コミュニティに対して, 合成データの利用に関する貴重な知見を提供することを目標とし, フィールド方法論ツールボックスの拡張のための基盤を, 分析データ生成の新たな革新的なアプローチで構築することを目的とする。
関連論文リスト
- Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
本稿では, 複雑度の異なる3つの生成モデルを用いて, 悪意ネットワークトラフィックを合成する手法を提案する。
提案手法は,数値データをテキストに変換し,言語モデリングタスクとして再フレーミングする。
提案手法は,高忠実度合成データの生成において,最先端の生成モデルを超えている。
論文 参考訳(メタデータ) (2024-11-04T09:51:10Z) - LLM-itation is the Sincerest Form of Data: Generating Synthetic Buggy Code Submissions for Computing Education [5.421088637597145]
大規模言語モデル(LLM)は、大規模でプライバシを保存する合成データを作成するための有望なアプローチを提供する。
本研究は,GPT-4oを用いた導入プログラミング演習のための合成バグギーコード生成について検討する。
合成データと実生データ間のテストケース故障の分布を比較し,実生データを模倣した合成データの精度を解析した。
論文 参考訳(メタデータ) (2024-11-01T00:24:59Z) - Data Generation Using Large Language Models for Text Classification: An Empirical Case Study [15.447491854250227]
我々は、合成データに基づいて訓練された自然言語理解(NLU)モデルを用いて、異なる世代からの合成データの品質を評価する。
この研究は、これらの要因の影響を実証分析し、データ生成の実践を改善するためのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2024-06-27T21:41:43Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
大規模言語モデル(LLM)の学習における高品質なデータ不足問題に対する解決法として,合成データを提案する。
我々の研究は、Q-A(Q-A)ペア、一般的な合成データに関連するこれらの特定の欠陥を掘り下げ、これらの欠陥を軽減するための未学習技術に基づく方法を提案する。
我々の研究は、より堅牢で効率的なLLMトレーニングを促進することを目的として、合成データの効果的な利用に関する重要な洞察を得た。
論文 参考訳(メタデータ) (2024-06-18T08:38:59Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
AIモデルの成功は、大規模で多様な、高品質なデータセットの可用性に依存している。
合成データは、現実世界のパターンを模倣する人工データを生成することによって、有望なソリューションとして現れてきた。
論文 参考訳(メタデータ) (2024-04-11T06:34:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
合成データは、機械学習モデルのトレーニングの代替となる。
合成データが現実世界データの複雑なニュアンスを反映することを保証することは、難しい作業です。
本稿では,データ中心型AI技術の統合による合成データ生成プロセスのガイドの可能性について検討する。
論文 参考訳(メタデータ) (2023-10-25T20:32:02Z) - Does Synthetic Data Make Large Language Models More Efficient? [0.0]
本稿では,NLPにおける合成データ生成のニュアンスについて考察する。
データ拡張の可能性や構造化品種の導入など、その利点を強調します。
テンプレートベースの合成データが現代の変圧器モデルの性能に与える影響を実証する。
論文 参考訳(メタデータ) (2023-10-11T19:16:09Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
時系列データは、研究者と産業組織間のデータの共有を妨げるため、しばしば不足または非常に敏感である。
本稿では,合成時系列の生成モデリングのためのオープンソースフレームワークである時系列生成モデリング(TSGM)を紹介する。
論文 参考訳(メタデータ) (2023-05-19T10:11:21Z) - Synthetic data, real errors: how (not) to publish and use synthetic data [86.65594304109567]
生成過程が下流MLタスクにどのように影響するかを示す。
本稿では、生成プロセスモデルパラメータの後方分布を近似するために、Deep Generative Ensemble (DGE)を導入する。
論文 参考訳(メタデータ) (2023-05-16T07:30:29Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
合成データは、機械学習の世界において支配的な力となり、データセットを個々のニーズに合わせて調整できる未来を約束する。
合成データのより広範な妥当性と適用のために,コミュニティが克服すべき根本的な課題について論じる。
論文 参考訳(メタデータ) (2023-04-07T16:38:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。