MoEE: Mixture of Emotion Experts for Audio-Driven Portrait Animation
- URL: http://arxiv.org/abs/2501.01808v2
- Date: Thu, 09 Jan 2025 02:45:43 GMT
- Title: MoEE: Mixture of Emotion Experts for Audio-Driven Portrait Animation
- Authors: Huaize Liu, Wenzhang Sun, Donglin Di, Shibo Sun, Jiahui Yang, Changqing Zou, Hujun Bao,
- Abstract summary: The generation of talking avatars has achieved significant advancements in precise audio synchronization.
Current methods face fundamental challenges, including the lack of frameworks for modeling single basic emotional expressions.
We propose the Mixture of Emotion Experts (MoEE) model, which decouples six fundamental emotions to enable the precise synthesis of both singular and compound emotional states.
In conjunction with the DH-FaceEmoVid-150 dataset, we demonstrate that the MoEE framework excels in generating complex emotional expressions and nuanced facial details.
- Score: 39.30784838378127
- License:
- Abstract: The generation of talking avatars has achieved significant advancements in precise audio synchronization. However, crafting lifelike talking head videos requires capturing a broad spectrum of emotions and subtle facial expressions. Current methods face fundamental challenges: a) the absence of frameworks for modeling single basic emotional expressions, which restricts the generation of complex emotions such as compound emotions; b) the lack of comprehensive datasets rich in human emotional expressions, which limits the potential of models. To address these challenges, we propose the following innovations: 1) the Mixture of Emotion Experts (MoEE) model, which decouples six fundamental emotions to enable the precise synthesis of both singular and compound emotional states; 2) the DH-FaceEmoVid-150 dataset, specifically curated to include six prevalent human emotional expressions as well as four types of compound emotions, thereby expanding the training potential of emotion-driven models. Furthermore, to enhance the flexibility of emotion control, we propose an emotion-to-latents module that leverages multimodal inputs, aligning diverse control signals-such as audio, text, and labels-to ensure more varied control inputs as well as the ability to control emotions using audio alone. Through extensive quantitative and qualitative evaluations, we demonstrate that the MoEE framework, in conjunction with the DH-FaceEmoVid-150 dataset, excels in generating complex emotional expressions and nuanced facial details, setting a new benchmark in the field. These datasets will be publicly released.
Related papers
- Omni-Emotion: Extending Video MLLM with Detailed Face and Audio Modeling for Multimodal Emotion Analysis [6.387263468033964]
We introduce a self-reviewed dataset and a human-reviewed dataset, comprising 24,137 coarse-grained samples and 3,500 manually annotated samples with detailed emotion annotations.
In addition to the audio modeling, we propose to explicitly integrate facial encoding models into the existing advanced Video MLLM.
Our Omni-Emotion achieves state-of-the-art performance in both emotion recognition and reasoning tasks.
arXiv Detail & Related papers (2025-01-16T12:27:05Z) - EmoSphere++: Emotion-Controllable Zero-Shot Text-to-Speech via Emotion-Adaptive Spherical Vector [26.656512860918262]
EmoSphere++ is an emotion-controllable zero-shot TTS model that can control emotional style and intensity to resemble natural human speech.
We introduce a novel emotion-adaptive spherical vector that models emotional style and intensity without human annotation.
We employ a conditional flow matching-based decoder to achieve high-quality and expressive emotional TTS in a few sampling steps.
arXiv Detail & Related papers (2024-11-04T21:33:56Z) - EMOdiffhead: Continuously Emotional Control in Talking Head Generation via Diffusion [5.954758598327494]
EMOdiffhead is a novel method for emotional talking head video generation.
It enables fine-grained control of emotion categories and intensities.
It achieves state-of-the-art performance compared to other emotion portrait animation methods.
arXiv Detail & Related papers (2024-09-11T13:23:22Z) - EmoLLM: Multimodal Emotional Understanding Meets Large Language Models [61.179731667080326]
Multi-modal large language models (MLLMs) have achieved remarkable performance on objective multimodal perception tasks.
But their ability to interpret subjective, emotionally nuanced multimodal content remains largely unexplored.
EmoLLM is a novel model for multimodal emotional understanding, incorporating with two core techniques.
arXiv Detail & Related papers (2024-06-24T08:33:02Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Language Models (Mostly) Do Not Consider Emotion Triggers When Predicting Emotion [87.18073195745914]
We investigate how well human-annotated emotion triggers correlate with features deemed salient in their prediction of emotions.
Using EmoTrigger, we evaluate the ability of large language models to identify emotion triggers.
Our analysis reveals that emotion triggers are largely not considered salient features for emotion prediction models, instead there is intricate interplay between various features and the task of emotion detection.
arXiv Detail & Related papers (2023-11-16T06:20:13Z) - EAMM: One-Shot Emotional Talking Face via Audio-Based Emotion-Aware
Motion Model [32.19539143308341]
We propose the Emotion-Aware Motion Model (EAMM) to generate one-shot emotional talking faces.
By incorporating the results from both modules, our method can generate satisfactory talking face results on arbitrary subjects.
arXiv Detail & Related papers (2022-05-30T17:39:45Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Infusing Multi-Source Knowledge with Heterogeneous Graph Neural Network
for Emotional Conversation Generation [25.808037796936766]
In a real-world conversation, we instinctively perceive emotions from multi-source information.
We propose a heterogeneous graph-based model for emotional conversation generation.
Experimental results show that our model can effectively perceive emotions from multi-source knowledge.
arXiv Detail & Related papers (2020-12-09T06:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.