Two-cavity-mediated photon-pair emission by one atom
- URL: http://arxiv.org/abs/2501.01891v1
- Date: Fri, 03 Jan 2025 16:55:32 GMT
- Title: Two-cavity-mediated photon-pair emission by one atom
- Authors: Gianvito Chiarella, Tobias Frank, Pau Farrera, Gerhard Rempe,
- Abstract summary: We report on a source based on a single atom with three energy levels in ladder configuration and coupled to two optical fiber cavities.
We efficiently generate photon pairs with in-fiber emission efficiency of $eta_mathrmpair=16(1)%$ and study their temporal correlation properties.
- Score: 0.0
- License:
- Abstract: Photon-pair sources are widely used in quantum optics and quantum information experiments. Despite their broad deployment, there has not yet been an on-demand implementation with efficient into-fiber photon generation and high single-photon purity. Here we report on such a source based on a single atom with three energy levels in ladder configuration and coupled to two optical fiber cavities. We efficiently generate photon pairs with in-fiber emission efficiency of $\eta_{\mathrm{pair}}=16(1)\%$ and study their temporal correlation properties. We simulate theoretically a regime with strong atom-cavity coupling and find that photons are directly emitted from the ground state, i.e. without atomic population in any intermediate state. We propose a scenario to observe such a double-vacuum-stimulated effect experimentally.
Related papers
- Realisation of a Coherent and Efficient One-Dimensional Atom [0.15274583259797847]
A coherent and efficiently coupled one-dimensional atom provides a large nonlinearity, enabling photonic quantum gates.
Here, we use a semiconductor quantum dot in an open microcavity as an implementation of a one-dimensional atom.
Our results pave the way towards the creation of exotic photonic states and two-photon phase gates.
arXiv Detail & Related papers (2024-02-19T21:48:12Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - High-rate entanglement between a semiconductor spin and
indistinguishable photons [0.0]
Photonic graph states are key resources for optical quantum technologies.
Spin-photon entanglement has been proposed to deterministically generate linear cluster states.
We harness a semiconductor quantum dot inserted in an optical cavity for efficient photon collection.
arXiv Detail & Related papers (2022-07-20T13:22:07Z) - Photon-mediated Stroboscopic Quantum Simulation of a $\mathbb{Z}_{2}$
Lattice Gauge Theory [58.720142291102135]
Quantum simulation of lattice gauge theories (LGTs) aims at tackling non-perturbative particle and condensed matter physics.
One of the current challenges is to go beyond 1+1 dimensions, where four-body (plaquette) interactions, not contained naturally in quantum simulating devices, appear.
We show how to prepare the ground state and measure Wilson loops using state-of-the-art techniques in atomic physics.
arXiv Detail & Related papers (2021-07-27T18:10:08Z) - Mechanical Oscillator Can Excite an Atom Through the Quantum Vacuum [6.89885350810882]
We consider a two-photon Rabi model with one of the cavity mirrors connected by a mechanical oscillator in strong-coupling regime.
We find that when the cavity is in its vacuum state, there exists a resonant coupling between the atom and mechanical oscillator.
Our theory reveals a kind of novel effective interaction and may find applications ranging from quantum information to nanotechnology.
arXiv Detail & Related papers (2021-06-27T11:35:03Z) - Investigating the coherent state detection probability of InGaAs/InP
SPAD-based single-photon detectors [55.41644538483948]
We investigate the probabilities of detecting single- and multi-photon coherent states on InGaAs/InP sine-gated and free-run avalanche diodes.
We conclude that multi-photon state detection cannot be regarded as independent events of absorption of individual single-photon states.
arXiv Detail & Related papers (2021-04-16T08:08:48Z) - Experimental Single-Copy Entanglement Distillation [0.0]
We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8 %.
Compared to the two-copy scheme, our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks.
arXiv Detail & Related papers (2021-01-27T15:59:55Z) - A bright and fast source of coherent single photons [46.25143811066789]
A single photon source is a key enabling technology in device-independent quantum communication.
We report a single photon source with an especially high system efficiency.
arXiv Detail & Related papers (2020-07-24T17:08:46Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.