論文の概要: GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention
- arxiv url: http://arxiv.org/abs/2501.01960v1
- Date: Sat, 07 Dec 2024 07:02:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-12 16:53:08.794775
- Title: GAF-FusionNet: Multimodal ECG Analysis via Gramian Angular Fields and Split Attention
- Title(参考訳): GAF-FusionNet:Gramian Angular FieldsとSplit AttentionによるマルチモーダルECG分析
- Authors: Jiahao Qin, Feng Liu,
- Abstract要約: 本稿では,時系列解析と画像ベース表現を統合した新しいECG分類フレームワークを提案する。
我々は、ECG200、ECG5000、MIT-BIH Arrhythmia Databaseの3つの多様なデータセット上でECG-FusionNetを評価した。
その結果,各データセットの94.5%,96.9%,99.6%の精度が得られた。
- 参考スコア(独自算出の注目度): 4.673285689826945
- License:
- Abstract: Electrocardiogram (ECG) analysis plays a crucial role in diagnosing cardiovascular diseases, but accurate interpretation of these complex signals remains challenging. This paper introduces a novel multimodal framework(GAF-FusionNet) for ECG classification that integrates time-series analysis with image-based representation using Gramian Angular Fields (GAF). Our approach employs a dual-layer cross-channel split attention module to adaptively fuse temporal and spatial features, enabling nuanced integration of complementary information. We evaluate GAF-FusionNet on three diverse ECG datasets: ECG200, ECG5000, and the MIT-BIH Arrhythmia Database. Results demonstrate significant improvements over state-of-the-art methods, with our model achieving 94.5\%, 96.9\%, and 99.6\% accuracy on the respective datasets. Our code will soon be available at https://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.
- Abstract(参考訳): 心電図(ECG)解析は心血管疾患の診断において重要な役割を担っているが、これらの複雑な信号の正確な解釈は依然として困難である。
本稿では,GAF(Gramian Angular Fields)を用いた時系列解析と画像ベース表現を統合した,ECG分類のための新しいマルチモーダルフレームワーク(GAF-FusionNet)を提案する。
提案手法では,時間的特徴と空間的特徴を適応的に融合し,相補的な情報の統合を実現するために,二層クロスチャネルスプリットアテンションモジュールを用いる。
我々は,3つのECGデータセット(ECG200,ECG5000,MIT-BIH Arrhythmia Database)上でGAF-FusionNetを評価した。
その結果,各データセットで94.5\%,96.9\%,99.6\%の精度が得られた。
私たちのコードは間もなくhttps://github.com/Cross-Innovation-Lab/GAF-FusionNet.git.comで利用可能になります。
関連論文リスト
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
解析条件後部を解析し,推論精度を向上させるグラフポアソン因子分析法(GPFA)を開発した。
また,GPFAを多層構造に拡張したグラフPoisson gamma belief Network (GPGBN) を用いて,階層的な文書関係を複数の意味レベルで捉える。
本モデルでは,高品質な階層型文書表現を抽出し,様々なグラフ解析タスクにおいて有望な性能を実現する。
論文 参考訳(メタデータ) (2024-10-13T02:22:14Z) - An Electrocardiogram Foundation Model Built on over 10 Million Recordings with External Evaluation across Multiple Domains [17.809094003643523]
我々はECG解析の診断能力を拡大するECGファウンデーションモデル(ECGFounder)を導入する。
ECGFounderは、Harvard-Emory ECG Databaseから150のラベルカテゴリを持つ1000万以上のECGでトレーニングされた。
AUROCは80の診断で0.95を超える。
論文 参考訳(メタデータ) (2024-10-05T12:12:02Z) - ECG-FM: An Open Electrocardiogram Foundation Model [3.611746032873298]
本稿では,ECG分析のためのオープン基盤モデルであるECG-FMを提案する。
ECG-FMはトランスフォーマーベースのアーキテクチャを採用し、250万のサンプルで事前訓練されている。
文脈情報のコマンドが強靭なパフォーマンス、豊富な事前学習された埋め込み、信頼性のある解釈可能性をもたらすことを示す。
論文 参考訳(メタデータ) (2024-08-09T17:06:49Z) - GL-Fusion: Global-Local Fusion Network for Multi-view Echocardiogram
Video Segmentation [15.8851111502473]
グローバルかつローカルな多視点情報を共同で活用するための,新しいGobal-Local fusion (GL-Fusion) ネットワークを提案する。
グローバルコンテキスト情報を抽出するために,Multi-view Global-based Fusion Module (MGFM)を提案する。
Multi-view Local-based Fusion Module (MLFM) は、異なる視点から心臓構造の相関関係を抽出するように設計されている。
論文 参考訳(メタデータ) (2023-09-20T08:43:40Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
本稿では,WSI分析のために,異なる種類の核間の相互関係を利用する新しいグラフベースのフレームワークを提案する。
具体的には、WSI を各ノードに "nucleus-type" 属性と各エッジに類似した意味属性を持つ異種グラフとして定式化する。
我々のフレームワークは、様々なタスクに対してかなりのマージンで最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-07-09T14:43:40Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
ECGのデライン化のための既存のデータベースは小さく、サイズやそれらが表す病態の配列に不足している。
まず、原データベースから抽出した基本セグメントのプールを与えられたECGトレースを確率的に合成し、その整合性のある合成トレースに配置するための一連のルールを考案した。
第二に、2つの新しいセグメンテーションに基づく損失関数が開発され、これは、正確な数の独立構造の予測を強制し、サンプル数の削減に焦点をあてて、より密接なセグメンテーション境界を創出することを目的としている。
論文 参考訳(メタデータ) (2021-11-25T10:11:41Z) - ECG Heartbeat Classification Using Multimodal Fusion [13.524306011331303]
本稿では,心電図の心拍数分類のための2つの計算効率の良いマルチモーダル融合フレームワークを提案する。
MFFでは,CNNの垂直層から特徴を抽出し,それらを融合させてユニークかつ相互依存的な情報を得た。
不整脈では99.7%,MIでは99.2%の分類が得られた。
論文 参考訳(メタデータ) (2021-07-21T03:48:35Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
ECG信号分類タスクのためのマルチスケール深部残差ネットワークを開発しています。
我々は,マルチリード信号を2次元行列として扱うことを提案する。
提案モデルは,mit-bihデータセットでは99.2%,alibabaデータセットでは89.4%のf1-scoreを実現する。
論文 参考訳(メタデータ) (2020-12-10T08:37:44Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
本研究では,不確実性解析とグラフ畳み込みネットワークに基づくセグメンテーション改善手法を提案する。
半教師付きグラフ学習問題を定式化するために、特定の入力ボリュームにおける畳み込みネットワークの不確実性レベルを用いる。
本手法は膵臓で1%,脾臓で2%向上し,最先端のCRF改善法よりも優れていた。
論文 参考訳(メタデータ) (2020-12-06T18:55:07Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
ディープラーニング(DL)アルゴリズムは、学術的、産業的にも重くなっている。
セグメンテーションフレームワークにECGの検出とデライン化を組み込むことにより、低解釈タスクにDLをうまく適用できることを実証する。
このモデルは、PhyloNetのQTデータベースを使用して、105個の増幅ECG記録から訓練された。
論文 参考訳(メタデータ) (2020-05-11T16:29:12Z) - Opportunities and Challenges of Deep Learning Methods for
Electrocardiogram Data: A Systematic Review [62.490310870300746]
心電図(Electrocardiogram、ECG)は、医学および医療において最も一般的に用いられる診断ツールの1つである。
深層学習法は心電図信号を用いた予測医療タスクにおいて有望な結果を得た。
本稿では、モデリングとアプリケーションの観点から、ECGデータに対するディープラーニング手法の体系的なレビューを行う。
論文 参考訳(メタデータ) (2019-12-28T02:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。