Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs
- URL: http://arxiv.org/abs/2501.01974v1
- Date: Sat, 28 Dec 2024 06:47:51 GMT
- Title: Hawkes based Representation Learning for Reasoning over Scale-free Community-structured Temporal Knowledge Graphs
- Authors: Yuwei Du, Xinyue Liu, Wenxin Liang, Linlin Zong, Xianchao Zhang,
- Abstract summary: We propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN)
HERLN learns structural information and evolutional patterns of a TKG simultaneously.
Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.
- Score: 9.669168390205595
- License:
- Abstract: Temporal knowledge graph (TKG) reasoning has become a hot topic due to its great value in many practical tasks. The key to TKG reasoning is modeling the structural information and evolutional patterns of the TKGs. While great efforts have been devoted to TKG reasoning, the structural and evolutional characteristics of real-world networks have not been considered. In the aspect of structure, real-world networks usually exhibit clear community structure and scale-free (long-tailed distribution) properties. In the aspect of evolution, the impact of an event decays with the time elapsing. In this paper, we propose a novel TKG reasoning model called Hawkes process-based Evolutional Representation Learning Network (HERLN), which learns structural information and evolutional patterns of a TKG simultaneously, considering the characteristics of real-world networks: community structure, scale-free and temporal decaying. First, we find communities in the input TKG to make the encoding get more similar intra-community embeddings. Second, we design a Hawkes process-based relational graph convolutional network to cope with the event impact-decaying phenomenon. Third, we design a conditional decoding method to alleviate biases towards frequent entities caused by long-tailed distribution. Experimental results show that HERLN achieves significant improvements over the state-of-the-art models.
Related papers
- Learning to Model Graph Structural Information on MLPs via Graph Structure Self-Contrasting [50.181824673039436]
We propose a Graph Structure Self-Contrasting (GSSC) framework that learns graph structural information without message passing.
The proposed framework is based purely on Multi-Layer Perceptrons (MLPs), where the structural information is only implicitly incorporated as prior knowledge.
It first applies structural sparsification to remove potentially uninformative or noisy edges in the neighborhood, and then performs structural self-contrasting in the sparsified neighborhood to learn robust node representations.
arXiv Detail & Related papers (2024-09-09T12:56:02Z) - A Novel Spatiotemporal Coupling Graph Convolutional Network [0.18130068086063336]
This paper presents a novel Graph Contemporalal Networks (GCNs)-based dynamic estimator namely Spatio Coupling GCN (SCG) model with the three-fold ideas as below.
The results demonstrate that SCG realizes higher accuracy compared with the state-of-the-arts, illustrating it can learn powerful representations to users and cloud services.
arXiv Detail & Related papers (2024-08-09T02:02:01Z) - Self-organization Preserved Graph Structure Learning with Principle of
Relevant Information [72.83485174169027]
PRI-GSL is a Graph Structure Learning framework for identifying the self-organization and revealing the hidden structure.
PRI-GSL learns a structure that contains the most relevant yet least redundant information quantified by von Neumann entropy and Quantum Jensen-Shannon divergence.
arXiv Detail & Related papers (2022-12-30T16:02:02Z) - Explainable Sparse Knowledge Graph Completion via High-order Graph
Reasoning Network [111.67744771462873]
This paper proposes a novel explainable model for sparse Knowledge Graphs (KGs)
It combines high-order reasoning into a graph convolutional network, namely HoGRN.
It can not only improve the generalization ability to mitigate the information insufficiency issue but also provide interpretability.
arXiv Detail & Related papers (2022-07-14T10:16:56Z) - Complex Evolutional Pattern Learning for Temporal Knowledge Graph
Reasoning [60.94357727688448]
TKG reasoning aims to predict potential facts in the future given the historical KG sequences.
The evolutional patterns are complex in two aspects, length-diversity and time-variability.
We propose a new model, called Complex Evolutional Network (CEN), which uses a length-aware Convolutional Neural Network (CNN) to handle evolutional patterns of different lengths.
arXiv Detail & Related papers (2022-03-15T11:02:55Z) - EvoKG: Jointly Modeling Event Time and Network Structure for Reasoning
over Temporal Knowledge Graphs [25.408246523764085]
Reasoning over temporal knowledge graphs (TKGs) is crucial for many applications to provide intelligent services.
We present a problem formulation that unifies the two major problems that need to be addressed for an effective reasoning over TKGs, namely, modeling the event time and the evolving network structure.
Our proposed method EvoKG jointly models both tasks in an effective framework, which captures the ever-changing structural and temporal dynamics in TKGs.
arXiv Detail & Related papers (2022-02-15T18:49:53Z) - Temporal Knowledge Graph Reasoning Based on Evolutional Representation
Learning [59.004025528223025]
Key to predict future facts is to thoroughly understand the historical facts.
A TKG is actually a sequence of KGs corresponding to different timestamps.
We propose a novel Recurrent Evolution network based on Graph Convolution Network (GCN)
arXiv Detail & Related papers (2021-04-21T05:12:21Z) - A Deep Graph Neural Networks Architecture Design: From Global
Pyramid-like Shrinkage Skeleton to Local Topology Link Rewiring [1.455240131708017]
We propose a three-pipeline training framework based on critical expressivity, including global model contraction, weight evolution, and link's weight rewiring.
We analyze the reason for the modularity (clustering) phenomenon in network topology and use it to rewire potential erroneous weighted links.
The architecture design on GNNs, in turn, verifies the expressivity of GNNs from dynamics and topological space aspects.
arXiv Detail & Related papers (2020-12-16T03:14:31Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.