A Novel Spatiotemporal Coupling Graph Convolutional Network
- URL: http://arxiv.org/abs/2408.07087v1
- Date: Fri, 9 Aug 2024 02:02:01 GMT
- Title: A Novel Spatiotemporal Coupling Graph Convolutional Network
- Authors: Fanghui Bi,
- Abstract summary: This paper presents a novel Graph Contemporalal Networks (GCNs)-based dynamic estimator namely Spatio Coupling GCN (SCG) model with the three-fold ideas as below.
The results demonstrate that SCG realizes higher accuracy compared with the state-of-the-arts, illustrating it can learn powerful representations to users and cloud services.
- Score: 0.18130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic Quality-of-Service (QoS) data capturing temporal variations in user-service interactions, are essential source for service selection and user behavior understanding. Approaches based on Latent Feature Analysis (LFA) have shown to be beneficial for discovering effective temporal patterns in QoS data. However, existing methods cannot well model the spatiality and temporality implied in dynamic interactions in a unified form, causing abundant accuracy loss for missing QoS estimation. To address the problem, this paper presents a novel Graph Convolutional Networks (GCNs)-based dynamic QoS estimator namely Spatiotemporal Coupling GCN (SCG) model with the three-fold ideas as below. First, SCG builds its dynamic graph convolution rules by incorporating generalized tensor product framework, for unified modeling of spatial and temporal patterns. Second, SCG combines the heterogeneous GCN layer with tensor factorization, for effective representation learning on bipartite user-service graphs. Third, it further simplifies the dynamic GCN structure to lower the training difficulties. Extensive experiments have been conducted on two large-scale widely-adopted QoS datasets describing throughput and response time. The results demonstrate that SCG realizes higher QoS estimation accuracy compared with the state-of-the-arts, illustrating it can learn powerful representations to users and cloud services.
Related papers
- GACL: Graph Attention Collaborative Learning for Temporal QoS Prediction [5.040979636805073]
We propose a novel Graph Collaborative Learning (GACL) framework for temporal prediction.
It builds on a dynamic user-service graph to comprehensively model historical interactions.
Experiments on the WS-DREAM dataset demonstrate that GACL significantly outperforms state-of-the-art methods for temporal prediction.
arXiv Detail & Related papers (2024-08-20T05:38:47Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Spatial-temporal Graph Convolutional Networks with Diversified Transformation for Dynamic Graph Representation Learning [6.9243139068960895]
This study proposes a spatial-temporal graph convolutional networks with diversified transformation (STGCNDT)
It includes three aspects: a) constructing a unified graph tensor convolutional network (GTCN) using tensor M-products without the need to representtemporal information separately; b) introducing three transformation schemes in GTN to model complex temporal patterns to aggregate temporal information; and c) constructing an ensemble of diversified transformations to obtain higher representation capabilities.
arXiv Detail & Related papers (2024-08-05T09:40:47Z) - CTRL: Continuous-Time Representation Learning on Temporal Heterogeneous Information Network [32.42051167404171]
We propose a Continuous-Time Representation Learning model on temporal HINs.
We train the model with a future event (a subgraph) prediction task to capture the evolution of the high-order network structure.
The results demonstrate that our model significantly boosts performance and outperforms various state-of-the-art approaches.
arXiv Detail & Related papers (2024-05-11T03:39:22Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
We propose a novel Dynamic Diffusion-al Graph Neural Network (DVGNN) fortemporal forecasting.
The proposed DVGNN model outperforms state-of-the-art approaches and achieves outstanding Root Mean Squared Error result.
arXiv Detail & Related papers (2023-05-16T11:38:19Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Graph-Time Convolutional Neural Networks: Architecture and Theoretical
Analysis [12.995632804090198]
We introduce Graph-Time Convolutional Neural Networks (GTCNNs) as principled architecture to aid learning.
The approach can work with any type of product graph and we also introduce a parametric graph to learn also the producttemporal coupling.
Extensive numerical results on benchmark corroborate our findings and show the GTCNN compares favorably with state-of-the-art solutions.
arXiv Detail & Related papers (2022-06-30T10:20:52Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
Graphal networks (GCNs) promising performance in skeleton-based human action recognition by modeling a sequence of skeletons as a graph.
Most of the recently proposed G-temporal-based methods improve the performance by learning the graph structure at each layer of the network.
arXiv Detail & Related papers (2020-11-07T19:03:04Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.