KANS: Knowledge Discovery Graph Attention Network for Soft Sensing in Multivariate Industrial Processes
- URL: http://arxiv.org/abs/2501.02015v1
- Date: Thu, 02 Jan 2025 15:02:36 GMT
- Title: KANS: Knowledge Discovery Graph Attention Network for Soft Sensing in Multivariate Industrial Processes
- Authors: Hwa Hui Tew, Gaoxuan Li, Fan Ding, Xuewen Luo, Junn Yong Loo, Chee-Ming Ting, Ze Yang Ding, Chee Pin Tan,
- Abstract summary: We present a framework known as a Knowledge discovery graph Attention Network for effective Soft sensing.
Unlike the existing deep learning soft sensor models, KANS can discover the intrinsic correlations and irregular relationships between the multivariate industrial processes.
Experimental results demonstrate that KANS significantly outperforms all the baselines and state-of-the-art methods in soft sensing performance.
- Score: 5.704540820918517
- License:
- Abstract: Soft sensing of hard-to-measure variables is often crucial in industrial processes. Current practices rely heavily on conventional modeling techniques that show success in improving accuracy. However, they overlook the non-linear nature, dynamics characteristics, and non-Euclidean dependencies between complex process variables. To tackle these challenges, we present a framework known as a Knowledge discovery graph Attention Network for effective Soft sensing (KANS). Unlike the existing deep learning soft sensor models, KANS can discover the intrinsic correlations and irregular relationships between the multivariate industrial processes without a predefined topology. First, an unsupervised graph structure learning method is introduced, incorporating the cosine similarity between different sensor embedding to capture the correlations between sensors. Next, we present a graph attention-based representation learning that can compute the multivariate data parallelly to enhance the model in learning complex sensor nodes and edges. To fully explore KANS, knowledge discovery analysis has also been conducted to demonstrate the interpretability of the model. Experimental results demonstrate that KANS significantly outperforms all the baselines and state-of-the-art methods in soft sensing performance. Furthermore, the analysis shows that KANS can find sensors closely related to different process variables without domain knowledge, significantly improving soft sensing accuracy.
Related papers
- Modality-Incremental Learning with Disjoint Relevance Mapping Networks for Image-based Semantic Segmentation [13.137604149999973]
In autonomous driving, diverse sensors contribute to robustness against adverse weather and lighting conditions.
In the context of continual learning, incremental learning is especially challenging for considerably large domain shifts.
We propose the use of a modified Relevance Mapping Network (RMN) to incrementally learn new modalities while preserving performance on previously learned modalities.
arXiv Detail & Related papers (2024-11-26T17:21:53Z) - Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction [27.521188262343596]
We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
arXiv Detail & Related papers (2024-05-07T14:08:57Z) - Physics-Enhanced Graph Neural Networks For Soft Sensing in Industrial Internet of Things [6.374763930914524]
The Industrial Internet of Things (IIoT) is reshaping manufacturing, industrial processes, and infrastructure management.
achieving highly reliable IIoT can be hindered by factors such as the cost of installing large numbers of sensors, limitations in retrofitting existing systems with sensors, or harsh environmental conditions that may make sensor installation impractical.
We propose physics-enhanced Graph Neural Networks (GNNs), which integrate principles of physics into graph-based methodologies.
arXiv Detail & Related papers (2024-04-11T18:03:59Z) - How are Prompts Different in Terms of Sensitivity? [50.67313477651395]
We present a comprehensive prompt analysis based on the sensitivity of a function.
We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output.
We introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding.
arXiv Detail & Related papers (2023-11-13T10:52:01Z) - Graph Neural Networks with Trainable Adjacency Matrices for Fault
Diagnosis on Multivariate Sensor Data [69.25738064847175]
It is necessary to consider the behavior of the signals in each sensor separately, to take into account their correlation and hidden relationships with each other.
The graph nodes can be represented as data from the different sensors, and the edges can display the influence of these data on each other.
It was proposed to construct a graph during the training of graph neural network. This allows to train models on data where the dependencies between the sensors are not known in advance.
arXiv Detail & Related papers (2022-10-20T11:03:21Z) - Deep Architecture Connectivity Matters for Its Convergence: A
Fine-Grained Analysis [94.64007376939735]
We theoretically characterize the impact of connectivity patterns on the convergence of deep neural networks (DNNs) under gradient descent training.
We show that by a simple filtration on "unpromising" connectivity patterns, we can trim down the number of models to evaluate.
arXiv Detail & Related papers (2022-05-11T17:43:54Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Learning Multiplicative Interactions with Bayesian Neural Networks for
Visual-Inertial Odometry [44.209301916028124]
This paper presents an end-to-end multi-modal learning approach for Visual-Inertial Odometry (VIO)
It is specifically designed to exploit sensor complementarity in the light of sensor degradation scenarios.
arXiv Detail & Related papers (2020-07-15T11:39:29Z) - A Framework for Learning Invariant Physical Relations in Multimodal
Sensory Processing [0.0]
We design a novel neural network architecture capable of learning, in an unsupervised manner, relations among sensory cues.
We describe the core system functionality when learning arbitrary non-linear relations in low-dimensional sensory data.
We demonstrate this through a real-world learning problem, where, from standard RGB camera frames, the network learns the relations between physical quantities.
arXiv Detail & Related papers (2020-06-30T08:42:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.