Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction
- URL: http://arxiv.org/abs/2405.04336v2
- Date: Sat, 1 Jun 2024 04:49:21 GMT
- Title: Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction
- Authors: Zhihao Wen, Yuan Fang, Pengcheng Wei, Fayao Liu, Zhenghua Chen, Min Wu,
- Abstract summary: We introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN)
THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data.
We have validated the effectiveness of our approach through comprehensive experiments.
- Score: 27.521188262343596
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting Remaining Useful Life (RUL) plays a crucial role in the prognostics and health management of industrial systems that involve a variety of interrelated sensors. Given a constant stream of time series sensory data from such systems, deep learning models have risen to prominence at identifying complex, nonlinear temporal dependencies in these data. In addition to the temporal dependencies of individual sensors, spatial dependencies emerge as important correlations among these sensors, which can be naturally modelled by a temporal graph that describes time-varying spatial relationships. However, the majority of existing studies have relied on capturing discrete snapshots of this temporal graph, a coarse-grained approach that leads to loss of temporal information. Moreover, given the variety of heterogeneous sensors, it becomes vital that such inherent heterogeneity is leveraged for RUL prediction in temporal sensor graphs. To capture the nuances of the temporal and spatial relationships and heterogeneous characteristics in an interconnected graph of sensors, we introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN). Specifically, THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data in a fine-grained manner. Moreover, the model leverages Feature-wise Linear Modulation (FiLM) to address the diversity of sensor types, significantly improving the model's capacity to learn the heterogeneity in the data sources. Finally, we have validated the effectiveness of our approach through comprehensive experiments. Our empirical findings demonstrate significant advancements on the N-CMAPSS dataset, achieving improvements of up to 19.2% and 31.6% in terms of two different evaluation metrics over state-of-the-art methods.
Related papers
- Graph Masked Autoencoder for Spatio-Temporal Graph Learning [38.085962443141206]
In urban sensing applications, effective-temporal prediction frameworks play a crucial role in traffic analysis, human mobility evaluations and crime prediction.
The presence of data noise and sparsity in spatial and temporal data presents significant challenges for existing neural network models in learning robust representations.
We propose a novel self-supervised learning paradigm for effective-temporal data augmentation.
arXiv Detail & Related papers (2024-10-14T07:33:33Z) - Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks [12.784885649573994]
Causal discovery from time-series data aims to capture both intra-slice (contemporaneous) and inter-slice (time-lagged) causality.
We propose a novel gradient-based causal discovery approach STIC, which focuses on textbfShort-textbfTerm textbfInvariance using textbfConvolutional neural networks.
arXiv Detail & Related papers (2024-08-15T08:43:28Z) - Integrative Deep Learning Framework for Parkinson's Disease Early Detection using Gait Cycle Data Measured by Wearable Sensors: A CNN-GRU-GNN Approach [0.3222802562733786]
We present a pioneering deep learning architecture tailored for the binary classification of subjects.
Our model harnesses the power of 1D-Convolutional Neural Networks (CNN), Gated Recurrent Units (GRU), and Graph Neural Network (GNN) layers.
Our proposed model achieves exceptional performance metrics, boasting accuracy, precision, recall, and F1 score values of 99.51%, 99.57%, 99.71%, and 99.64%, respectively.
arXiv Detail & Related papers (2024-04-09T15:19:13Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - Graph-Aware Contrasting for Multivariate Time-Series Classification [50.84488941336865]
Existing contrastive learning methods mainly focus on achieving temporal consistency with temporal augmentation and contrasting techniques.
We propose Graph-Aware Contrasting for spatial consistency across MTS data.
Our proposed method achieves state-of-the-art performance on various MTS classification tasks.
arXiv Detail & Related papers (2023-09-11T02:35:22Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
We propose a correlation-aware spatial-temporal graph learning (termed CST-GL) for time series anomaly detection.
CST-GL explicitly captures the pairwise correlations via a multivariate time series correlation learning module.
A novel anomaly scoring component is further integrated into CST-GL to estimate the degree of an anomaly in a purely unsupervised manner.
arXiv Detail & Related papers (2023-07-17T11:04:27Z) - Space-Time Graph Neural Networks with Stochastic Graph Perturbations [100.31591011966603]
Space-time graph neural networks (ST-GNNs) learn efficient graph representations of time-varying data.
In this paper we revisit the properties of ST-GNNs and prove that they are stable to graph stabilitys.
Our analysis suggests that ST-GNNs are suitable for transfer learning on time-varying graphs.
arXiv Detail & Related papers (2022-10-28T16:59:51Z) - Latent Temporal Flows for Multivariate Analysis of Wearables Data [0.9990687944474738]
We introduce Latent Temporal Flows, a method for multivariate time-series modeling tailored to this setting.
We show that the proposed method consistently outperforms the state-of-the-art in multi-step forecasting benchmarks.
arXiv Detail & Related papers (2022-10-14T02:54:34Z) - DynImp: Dynamic Imputation for Wearable Sensing Data Through Sensory and
Temporal Relatedness [78.98998551326812]
We argue that traditional methods have rarely made use of both times-series dynamics of the data as well as the relatedness of the features from different sensors.
We propose a model, termed as DynImp, to handle different time point's missingness with nearest neighbors along feature axis.
We show that the method can exploit the multi-modality features from related sensors and also learn from history time-series dynamics to reconstruct the data under extreme missingness.
arXiv Detail & Related papers (2022-09-26T21:59:14Z) - An Adaptive Federated Relevance Framework for Spatial Temporal Graph
Learning [14.353798949041698]
We propose an adaptive federated relevance framework, namely FedRel, for spatial-temporal graph learning.
The core Dynamic Inter-Intra Graph (DIIG) module in the framework is able to use these features to generate the spatial-temporal graphs.
To improve the model generalization ability and performance while preserving the local data privacy, we also design a relevance-driven federated learning module.
arXiv Detail & Related papers (2022-06-07T16:12:17Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.