Magnetic moments in the Poynting theorem, Maxwell equations, Dirac equation, and QED
- URL: http://arxiv.org/abs/2501.02022v1
- Date: Thu, 02 Jan 2025 18:32:45 GMT
- Title: Magnetic moments in the Poynting theorem, Maxwell equations, Dirac equation, and QED
- Authors: Peter J Mohr,
- Abstract summary: We show how magnetic moment effects are included in either version of electrodynamics.
In either case, we express the interactions in terms of electromagnetic fields only, avoiding use of a vector potential.
- Score: 0.0
- License:
- Abstract: The role of magnetic moments in electrodynamics is examined in this work. The effects are described in the context of conventional quantum electrodynamics expressed in terms of the electromagnetic fields or in the context of an extended Poynting theorem and extended Maxwell equations. These extensions take into account the energetics of interaction of magnetic moments with inhomogeneous magnetic fields. We show how magnetic moment effects are included in either version of electrodynamics and that these apparently different formulations can give consistent results. In either case, we express the interactions in terms of electromagnetic fields only, avoiding use of a vector potential.
Related papers
- Topological schemes for the electrodynamic Aharonov-Bohm effect [0.0]
We consider different schemes for the electrodynamic Aharonov-Bohm (AB) effect introduced in Ref. [Phys. Rev. A $mathbf108$, 062218 (2023)
We discuss how the AB phase difference depends on the topology of the electric and magnetic fields in spacetime in the different treated situations.
arXiv Detail & Related papers (2024-11-14T17:45:25Z) - Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Gauge invariance of the Aharonov-Bohm effect in a quantum electrodynamics framework [0.0]
We provide an exact solution for the electromagnetic ground energy due to the interaction of the quantum electromagnetic field with the classical charges and currents.
We use first-order perturbation theory to compute an extra change on the electromagnetic ground energy due to the presence of a quantum charged particle.
arXiv Detail & Related papers (2024-05-14T12:20:14Z) - An interpretation for Aharonov-Bohm effect with classical
electromagnetic theory [0.0]
The magnetic Aharonov-Bohm effect shows that charged particles may be affected by the vector potential in regions without any electric or magnetic fields.
A common explanation is based on quantum mechanics, which states that the wavefunctions associated with the charges will accumulate a phase shift due to the vector potential.
We propose a simple but reasonable interpretation based on the theory for electromagnetic radiation and couplings.
arXiv Detail & Related papers (2022-01-26T02:04:08Z) - Duality, decay rates and local-field models in macroscopic QED [0.0]
Heaviside-Larmor duality symmetry of Maxwell's equations is broken by the usual form of magnetic interaction energy.
Local fields should be treated as a necessity for correctly translating between the microscopic world of the dipole and the macroscopic world of the measured fields.
We compute the magnetic dipole decay rate in a magneto-dielectric with local-field effects taken into account.
arXiv Detail & Related papers (2021-12-10T19:00:00Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Surpassing the Energy Resolution Limit with ferromagnetic torque sensors [55.41644538483948]
We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit.
We find that the Energy Resolution Limit (ERL), pointed out in recent literature, can be surpassed by many orders of magnitude.
arXiv Detail & Related papers (2021-04-29T15:44:12Z) - Aharonov-Casher and shielded Aharonov-Bohm effects with a quantum
electromagnetic field [0.0]
We use a covariant formalism capable of describing the electric and magnetic versions of the Aharonov-Bohm effect.
We show that the magnetic Aharonov-Bohm effect must be present even if the solenoid generating the magnetic field is shielded by a perfect conductor.
arXiv Detail & Related papers (2020-11-17T23:49:09Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.