Duality, decay rates and local-field models in macroscopic QED
- URL: http://arxiv.org/abs/2112.05762v1
- Date: Fri, 10 Dec 2021 19:00:00 GMT
- Title: Duality, decay rates and local-field models in macroscopic QED
- Authors: Niclas Westerberg, Anette Messinger and Stephen M. Barnett
- Abstract summary: Heaviside-Larmor duality symmetry of Maxwell's equations is broken by the usual form of magnetic interaction energy.
Local fields should be treated as a necessity for correctly translating between the microscopic world of the dipole and the macroscopic world of the measured fields.
We compute the magnetic dipole decay rate in a magneto-dielectric with local-field effects taken into account.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Any treatment of magnetic interactions between atoms, molecules and optical
media must start at the form of the interaction energy. This forms the base on
which predictions about any number of magnetic atom-light properties stands --
spontaneous decay rates and forces included. As is well-known, the
Heaviside-Larmor duality symmetry of Maxwell's equations, where electric and
magnetic quantities are exchanges, is broken by the usual form of the magnetic
interaction energy. We argue that this symmetry can be restored by including
general local-field effects, and that local fields should be treated as a
necessity for correctly translating between the microscopic world of the dipole
and the macroscopic world of the measured fields. This may additionally aid in
resolving a long standing debate over the form of the force on a dipole in a
medium. Finally, we compute the magnetic dipole decay rate in a
magneto-dielectric with local-field effects taken into account, and show that
macroscopic quantum electrodynamics can be made to be dual symmetric at an
operator level, instead of only for expectation values.
Related papers
- Atom-Field-Medium Interactions I: Graded Influence Actions for $N$ Harmonic Atoms in a Dielectric-Altered Quantum Field [0.0]
We develop the graded influence action formalism citeBehHu10,BH11 to account for the influences of successive sub-layers on the dynamics of the variables of interest.
arXiv Detail & Related papers (2024-08-07T06:33:27Z) - A functional approach to the Van der Waals interaction [0.0]
We use a functional integral approach to evaluate the quantum interaction energy between two neutral atoms.
We show that the resulting expression for the energy becomes the Van der Waals interaction energy at the first non-trivial order.
We also explore the opposite, strong-coupling limit, which yields a result for the interaction energy as well as a threshold for the existence of a vacuum decay probability.
arXiv Detail & Related papers (2023-02-01T19:14:28Z) - Two ultracold highly magnetic atoms in a one-dimensional harmonic trap [0.0]
We theoretically investigate the properties of two interacting ultracold highly magnetic atoms trapped in a one-dimensional harmonic potential.
We show the role of inability and symmetries in the dynamics by studying the time evolution of the observables.
The presented model may depict the on-site interaction of the extended Hubbard models, therefore giving a better understanding of the fundamental building block of the respective many-body quantum simulators.
arXiv Detail & Related papers (2022-05-18T14:44:37Z) - Cooperative optical wavefront engineering with atomic arrays [0.0]
Natural atoms can cooperatively respond to light to form collective excitations with strong magnetic, as well as electric, interactions, together with corresponding electric and magnetic mirror reflection properties.
We show that ultrathin planar arrays of atoms can be utilized as atomic lenses to focus light to subwavelength spots at the diffraction limit, to steer light at different angles allowing for optical sorting, and as converters between different angular momentum states.
arXiv Detail & Related papers (2021-12-22T13:22:51Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Magnetic properties and quench dynamics of two interacting ultracold
molecules in a trap [0.0]
We investigate the magnetic properties and nonequilibrium dynamics of two interacting ultracold polar and paramagnetic molecules in a harmonic trap in external electric and magnetic fields.
The molecules interact via a multichannel two-body contact potential, incorporating the short-range anisotropy of intermolecular interactions.
arXiv Detail & Related papers (2020-10-22T17:35:46Z) - General quantum-mechanical solution for twisted electrons in a uniform
magnetic field [68.8204255655161]
A theory of twisted (and other structured) paraxial electrons in a uniform magnetic field is developed.
The observable effect of a different behavior of relativistic Laguerre-Gauss beams with opposite directions of the orbital angular momentum penetrating from the free space into a magnetic field is predicted.
arXiv Detail & Related papers (2020-05-13T16:35:10Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.