論文の概要: MRG: A Multi-Robot Manufacturing Digital Scene Generation Method Using Multi-Instance Point Cloud Registration
- arxiv url: http://arxiv.org/abs/2501.02041v1
- Date: Fri, 03 Jan 2025 16:23:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:03.460323
- Title: MRG: A Multi-Robot Manufacturing Digital Scene Generation Method Using Multi-Instance Point Cloud Registration
- Title(参考訳): MRG:マルチインスタンスポイントクラウド登録を用いたマルチロボット製作デジタルシーン生成手法
- Authors: Songjie Han, Yinhua Liu, Yanzheng Li, Hua Chen, Dongmei Yang,
- Abstract要約: 本稿では,Multi-Robot Manufacturing Digital Scene Generation (MRG)法を初めて紹介する。
産業用ロボットの特性と製造環境に配慮し,インスタンス中心のトランスフォーマーモジュールを開発した。
効率的なスクリーニングと最適化のアルゴリズムは、最終的な登録結果を洗練するために設計されている。
- 参考スコア(独自算出の注目度): 2.7679780534999923
- License:
- Abstract: A high-fidelity digital simulation environment is crucial for accurately replicating physical operational processes. However, inconsistencies between simulation and physical environments result in low confidence in simulation outcomes, limiting their effectiveness in guiding real-world production. Unlike the traditional step-by-step point cloud "segmentation-registration" generation method, this paper introduces, for the first time, a novel Multi-Robot Manufacturing Digital Scene Generation (MRG) method that leverages multi-instance point cloud registration, specifically within manufacturing scenes. Tailored to the characteristics of industrial robots and manufacturing settings, an instance-focused transformer module is developed to delineate instance boundaries and capture correlations between local regions. Additionally, a hypothesis generation module is proposed to extract target instances while preserving key features. Finally, an efficient screening and optimization algorithm is designed to refine the final registration results. Experimental evaluations on the Scan2CAD and Welding-Station datasets demonstrate that: (1) the proposed method outperforms existing multi-instance point cloud registration techniques; (2) compared to state-of-the-art methods, the Scan2CAD dataset achieves improvements in MR and MP by 12.15% and 17.79%, respectively; and (3) on the Welding-Station dataset, MR and MP are enhanced by 16.95% and 24.15%, respectively. This work marks the first application of multi-instance point cloud registration in manufacturing scenes, significantly advancing the precision and reliability of digital simulation environments for industrial applications.
- Abstract(参考訳): 高忠実なデジタルシミュレーション環境は、物理的操作プロセスを正確に再現するために不可欠である。
しかし、シミュレーションと物理環境の矛盾はシミュレーション結果の信頼性を低下させ、実世界の生産を導く上での有効性を制限する。
従来のステップ・バイ・ステップ・ポイント・クラウド・セグメンテーション・レジストレーション(segmentation-registration)生成法とは異なり,本研究では,特に製造シーンにおけるマルチインスタンス・ポイント・クラウドの登録を利用した,新しいマルチロボット・マニュファクチャリング・デジタル・シーン・ジェネレーション(MRG)手法を提案する。
産業用ロボットの特性と製造環境に配慮して,インスタンスに着目したトランスフォーマーモジュールが開発され,インスタンス境界を規定し,局所領域間の相関関係を捉えている。
さらに、キー機能を保持しながらターゲットインスタンスを抽出する仮説生成モジュールを提案する。
最後に、最終的な登録結果を洗練するために、効率的なスクリーニングと最適化アルゴリズムを設計する。
Scan2CAD と Welding-Station のデータセットに対する実験評価は,(1) 提案手法が既存のマルチインスタンスポイントクラウド登録技術より優れていること,(2) 最先端手法と比較して,Scan2CAD データセットは MR と MP の改善を 12.15% と 17.79% で達成すること,(3) 溶接-Station データセットでは MR と MP が 16.95% と 24.15% に向上すること,などが示されている。
この研究は、製造現場におけるマルチインスタンスポイントクラウドの登録を初めて適用し、産業用途におけるディジタルシミュレーション環境の精度と信頼性を大幅に向上させた。
関連論文リスト
- OminiControl: Minimal and Universal Control for Diffusion Transformer [68.3243031301164]
OminiControlは、イメージ条件をトレーニング済みのDiffusion Transformer(DiT)モデルに統合するフレームワークである。
コアとなるOminiControlはパラメータ再利用機構を活用しており、強力なバックボーンとしてイメージ条件をエンコードすることができる。
OminiControlは、主観駆動生成や空間的に整合した条件を含む、幅広いイメージコンディショニングタスクを統一的に処理する。
論文 参考訳(メタデータ) (2024-11-22T17:55:15Z) - PGCS: Physical Law embedded Generative Cloud Synthesis in Remote Sensing Images [9.655563155560658]
物理法則組み込みクラウド合成法 (PGCS) は, 実データを改善するために, 多様な現実的なクラウド画像を生成するために提案されている。
2つの雲補正法がPGCSから開発され、雲補正作業における最先端手法と比較して優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-22T12:36:03Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - MEDPNet: Achieving High-Precision Adaptive Registration for Complex Die Castings [10.504847830252254]
本稿では,Multiscale Efficient Deep Closest Point (MEDPNet) と呼ばれる高精度適応型登録手法を提案する。
MEDPNet法は、効率的なDCP法を用いて粗大なダイカストポイントクラウドデータ登録を行い、次いでMDR法を用いて精度の高い登録を行う。
提案手法は, 複雑なダイカスト点クラウドデータに適用した場合の, 最先端の幾何学的および学習的登録法と比較して, 優れた性能を示す。
論文 参考訳(メタデータ) (2024-03-15T03:42:38Z) - Towards a Digital Twin Framework in Additive Manufacturing: Machine
Learning and Bayesian Optimization for Time Series Process Optimization [10.469801991143546]
レーザー指向エネルギー堆積(DED)は、複雑なジオメトリーと材料グレーディングを作るための添加性製造(AM)の利点を提供する。
鍵となる問題は、DED中の熱蓄積であり、それは材料のミクロ構造と性質に影響を与える。
本稿では、DEDプロセスパラメータをリアルタイムに予測制御し、特定の設計目的を満たすためのデジタルツイン(DT)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-27T17:53:13Z) - RegFormer: An Efficient Projection-Aware Transformer Network for
Large-Scale Point Cloud Registration [73.69415797389195]
本稿では,大規模クラウドアライメントのためのエンドツーエンドトランス (RegFormer) ネットワークを提案する。
具体的には、プロジェクション対応階層変換器を提案し、長距離依存を捕捉し、外乱をフィルタする。
我々の変圧器は線形複雑であり、大規模シーンでも高い効率が保証される。
論文 参考訳(メタデータ) (2023-03-22T08:47:37Z) - A Generative Approach for Production-Aware Industrial Network Traffic
Modeling [70.46446906513677]
ドイツにあるTrumpf工場に配備されたレーザー切断機から発生するネットワークトラフィックデータについて検討した。
我々は、トラフィック統計を分析し、マシンの内部状態間の依存関係をキャプチャし、ネットワークトラフィックを生産状態依存プロセスとしてモデル化する。
可変オートエンコーダ(VAE)、条件付き可変オートエンコーダ(CVAE)、生成逆ネットワーク(GAN)など、様々な生成モデルの性能の比較を行った。
論文 参考訳(メタデータ) (2022-11-11T09:46:58Z) - Surrogate Modelling for Injection Molding Processes using Machine
Learning [0.23090185577016442]
射出成形は、複雑なプラスチックオブジェクトをモデル化するための最も一般的な製造方法の1つである。
モルドフローシミュレーションプロジェクトからのデータの抽出を含むデータ処理パイプラインのベースラインを提案する。
我々は,時間と偏向分布予測のための機械学習モデルを評価し,MSEおよびRMSEメトリクスのベースライン値を提供する。
論文 参考訳(メタデータ) (2021-07-30T12:13:52Z) - Learning to predict metal deformations in hot-rolling processes [59.00006390882099]
ホットローリング(Hot-rolling)は、入力から一連の変形を通じて断面を生成する金属成形プロセスである。
現状では、ロールの回転列と形状は、与えられた断面を達成するために必要である。
そこで本研究では,一組のロールが与えられた形状を予測するための教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T13:33:44Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。