論文の概要: Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2501.02087v1
- Date: Fri, 03 Jan 2025 20:25:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-07 17:09:15.338872
- Title: Beyond CVaR: Leveraging Static Spectral Risk Measures for Enhanced Decision-Making in Distributional Reinforcement Learning
- Title(参考訳): CVaRを超えて:分散強化学習における意思決定強化のための静的スペクトルリスク対策の活用
- Authors: Mehrdad Moghimi, Hyejin Ku,
- Abstract要約: 金融、ヘルスケア、ロボティクスといった分野では、最悪のシナリオを管理することが重要です。
分散強化学習(DRL)は、リスク感受性を意思決定プロセスに組み込む自然な枠組みを提供する。
より広範な静的スペクトルリスク対策(SRM)を最適化する収束保証付きDRLアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 4.8342038441006805
- License:
- Abstract: In domains such as finance, healthcare, and robotics, managing worst-case scenarios is critical, as failure to do so can lead to catastrophic outcomes. Distributional Reinforcement Learning (DRL) provides a natural framework to incorporate risk sensitivity into decision-making processes. However, existing approaches face two key limitations: (1) the use of fixed risk measures at each decision step often results in overly conservative policies, and (2) the interpretation and theoretical properties of the learned policies remain unclear. While optimizing a static risk measure addresses these issues, its use in the DRL framework has been limited to the simple static CVaR risk measure. In this paper, we present a novel DRL algorithm with convergence guarantees that optimizes for a broader class of static Spectral Risk Measures (SRM). Additionally, we provide a clear interpretation of the learned policy by leveraging the distribution of returns in DRL and the decomposition of static coherent risk measures. Extensive experiments demonstrate that our model learns policies aligned with the SRM objective, and outperforms existing risk-neutral and risk-sensitive DRL models in various settings.
- Abstract(参考訳): 金融、医療、ロボティクスといった分野では、最悪のシナリオを管理することが重要である。
分散強化学習(DRL)は、リスク感受性を意思決定プロセスに組み込む自然な枠組みを提供する。
しかし,従来のアプローチでは,(1) 決定段階での固定的リスク対策の使用は過度に保守的な政策をもたらすことが多く,(2) 学習した政策の解釈と理論的性質はいまだ不明である。
静的リスク尺度の最適化はこれらの問題に対処するが、DRLフレームワークでの使用は単純な静的CVaRリスク尺度に限られている。
本稿では、より広範な静的スペクトルリスク対策(SRM)のために最適化された収束保証付きDRLアルゴリズムを提案する。
さらに,DRLにおけるリターンの分布と静的コヒーレントリスク尺度の分解を利用して,学習方針を明確に解釈する。
広範囲な実験により,本モデルはSRMの目標に沿った政策を学習し,既存のリスクニュートラルモデルやリスクに敏感なDRLモデルよりも優れた性能を発揮することが示された。
関連論文リスト
- Pessimism Meets Risk: Risk-Sensitive Offline Reinforcement Learning [19.292214425524303]
リスクに敏感な強化学習(RL)は,不確実性を管理し,潜在的な有害な結果を最小限に抑えることが不可欠であるシナリオにおいて,意思決定を強化する能力において重要な分野である。
本研究は, エントロピーリスク尺度をRL問題に適用することに焦点を当てる。
我々は,リスクに敏感な観点からはまだ検討されていない理論的枠組みである線形マルコフ決定プロセス(MDP)の設定を中心としている。
論文 参考訳(メタデータ) (2024-07-10T13:09:52Z) - Robust Risk-Sensitive Reinforcement Learning with Conditional Value-at-Risk [23.63388546004777]
我々はロバスト・マルコフ決定過程の下でCVaRに基づくリスク感受性RLのロバスト性を分析する。
実世界の問題における意思決定依存の不確実性の存在を動機として、状態行動依存曖昧性集合による問題を研究する。
論文 参考訳(メタデータ) (2024-05-02T20:28:49Z) - Risk-Sensitive RL with Optimized Certainty Equivalents via Reduction to
Standard RL [48.1726560631463]
我々は,OCE(Optimized Certainty Equivalent)リスクを用いたリスク感性強化学習について検討した。
標準RLへの還元による2つの一般的なメタアルゴリズムを提案する。
我々は,事前アルゴリズムが確実に失敗する間に,最適リスク感応ポリシーを学習することを示す。
論文 参考訳(メタデータ) (2024-03-10T21:45:12Z) - Provable Risk-Sensitive Distributional Reinforcement Learning with
General Function Approximation [54.61816424792866]
本稿では,リスク感性分布強化学習(RS-DisRL)と静的リプシッツリスク対策(LRM),一般関数近似について紹介する。
モデルに基づく関数近似のためのモデルベース戦略であるtextttRS-DisRL-M と、一般値関数近似のためのモデルフリーアプローチである textttRS-DisRL-V の2つの革新的なメタアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-02-28T08:43:18Z) - Provably Efficient Iterated CVaR Reinforcement Learning with Function
Approximation and Human Feedback [57.6775169085215]
リスクに敏感な強化学習は、期待される報酬とリスクのバランスをとるポリシーを最適化することを目的としている。
本稿では,線形および一般関数近似の下で,CVaR(Iterated Conditional Value-at-Risk)を目標とする新しいフレームワークを提案する。
本稿では,この反復CVaR RLに対するサンプル効率の高いアルゴリズムを提案し,厳密な理論的解析を行う。
論文 参考訳(メタデータ) (2023-07-06T08:14:54Z) - Is Risk-Sensitive Reinforcement Learning Properly Resolved? [32.42976780682353]
そこで本稿では,RSRL問題に対して最適ポリシーに収束可能な新しいアルゴリズムであるトラジェクトリQ-Learning(TQL)を提案する。
新たな学習アーキテクチャに基づいて,さまざまなリスク対応政策を学習するための,さまざまなリスク対策の汎用的かつ実践的な実装を自由に導入できる。
論文 参考訳(メタデータ) (2023-07-02T11:47:21Z) - One Risk to Rule Them All: A Risk-Sensitive Perspective on Model-Based
Offline Reinforcement Learning [25.218430053391884]
両問題に共同で対処するためのメカニズムとしてリスク感受性を提案する。
相対的不確実性へのリスク回避は、環境に悪影響を及ぼす可能性のある行動を妨げる。
実験の結果,提案アルゴリズムは決定論的ベンチマーク上での競合性能を実現することがわかった。
論文 参考訳(メタデータ) (2022-11-30T21:24:11Z) - Efficient Risk-Averse Reinforcement Learning [79.61412643761034]
リスク逆強化学習(RL)では、リターンのリスク測定を最適化することが目標である。
特定の条件下では、これは必然的に局所最適障壁につながることを証明し、それを回避するためのソフトリスク機構を提案する。
迷路ナビゲーション,自律運転,資源配分ベンチマークにおいて,リスク回避の改善を示す。
論文 参考訳(メタデータ) (2022-05-10T19:40:52Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
本研究は,リスクに敏感な深層強化学習を,分散リスク基準による平均報酬条件下で研究する試みである。
本稿では,ポリシー,ラグランジュ乗算器,フェンシェル双対変数を反復的かつ効率的に更新するアクタ批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-12-28T05:02:26Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。